9 research outputs found

    A standard protocol for reporting species distribution models

    Get PDF
    Species distribution models (SDMs) constitute the most common class of models across ecology, evolution and conservation. The advent of ready-to-use software pack - ages and increasing availability of digital geoinformation have considerably assisted the application of SDMs in the past decade, greatly enabling their broader use for informing conservation and management, and for quantifying impacts from global change. However, models must be fit for purpose, with all important aspects of their development and applications properly considered. Despite the widespread use of SDMs, standardisation and documentation of modelling protocols remain limited, which makes it hard to assess whether development steps are appropriate for end use. To address these issues, we propose a standard protocol for reporting SDMs, with an emphasis on describing how a study’s objective is achieved through a series of model - ing decisions. We call this the ODMAP (Overview, Data, Model, Assessment and Prediction) protocol, as its components reflect the main steps involved in building SDMs and other empirically-based biodiversity models. The ODMAP protocol serves two main purposes. First, it provides a checklist for authors, detailing key steps for model building and analyses, and thus represents a quick guide and generic workflow for modern SDMs. Second, it introduces a structured format for documenting and communicating the models, ensuring transparency and reproducibility, facilitating peer review and expert evaluation of model quality, as well as meta-analyses. We detail all elements of ODMAP, and explain how it can be used for different model objectives and applications, and how it complements efforts to store associated metadata and define modelling standards. We illustrate its utility by revisiting nine previously published case studies, and provide an interactive web-based application to facilitate its use. We plan to advance ODMAP by encouraging its further refinement and adoption by the scientific community

    Experience from downscaling IPCC-SRES scenarios to specific national-level focus scenarios for ecosystem service management

    No full text
    Scenario analysis is a widely used approach to incorporate uncertainties in global change research. In the context of regional ecosystem service and landscape management where global IPCC climate simulations and their downscaled derivates are applied, it can be useful to work with regional socio-economic scenarios that are coherent with the global IPCC scenarios. The consistency with the original source scenarios, transparency and reproducibility of the methods used as well as the internal consistency of the derived scenarios are important methodological prerequisites for coherently downscaling pre-existing source scenarios. In contrast to well-established systematic-qualitative scenario techniques, we employ here a formal technique of scenario construction which combines expert judgement with a quantitative, indicator-based selection algorithm in order to deduce a formally consistent set of focus scenario. In our case study, these focus scenarios reflect the potential development pathways of major national-level drivers for ecosystem service management in Swiss mountain regions. The integration of an extra impact factor (“Global Trends”) directly referring to the four principle SRES scenario families, helped us to formally internalise base assumptions of IPCC SRES scenarios to regional scenarios that address a different thematic focus (ecosystem service management), spatial level (national) and time horizon (2050). Compared to the well-established systematic-qualitative approach, we find strong similarities between the two methods, including the susceptibility to personal judgement which is only partly reduced by the formal method. However, the formalised scenario approach conveys four clear advantages, (1) the better documentation of the process, (2) its reproducibility, (3) the openness in terms of the number and directions of the finally selected set of scenarios, and (4) its analytical power

    The Trouble with Diffusion

    No full text
    The phenomenological formalism, which yields Fick's Laws for diffusion in single phase multicomponent systems, is widely accepted as the basis for the mathematical description of diffusion. This paper focuses on problems associated with this formalism. This mode of description of the process is cumbersome, defining as it does matrices of interdiffusion coefficients (the central material properties) that require a large experimental investment for their evaluation in three component systems, and, indeed cannot be evaluated for systems with more than three components. It is also argued that the physical meaning of the numerical values of these properties with respect to the atom motions in the system remains unknown. The attempt to understand the physical content of the diffusion coefficients in the phenomenological formalism has been the central fundamental problem in the theory of diffusion in crystalline alloys. The observation by Kirkendall that the crystal lattice moves during diffusion led Darken to develop the concept of intrinsic diffusion, i.e., atom motion relative to the crystal lattice. Darken and his successors sought to relate the diffusion coefficients computed for intrinsic fluxes to those obtained from the motion of radioactive tracers in chemically homogeneous samples which directly report the jump frequencies of the atoms as a function of composition and temperature. This theoretical connection between tracer, intrinsic and interdiffusion behavior would provide the basis for understanding the physical content of interdiffusion coefficients. Definitive tests of the resulting theoretical connection have been carried out for a number of binary systems for which all three kinds of observations are available. In a number of systems predictions of intrinsic coefficients from tracer data do not agree with measured values although predictions of interdiffusion coefficients appear to give reasonable agreement. Thus, the complete connection has not been made, even for binary systems. The theory has never been tested in multicomponent systems. An alternative path to understanding diffusion behavior in multicomponent systems is presented which is based upon a kinetically derived version of the flux equations. While this approach has problems of its own, it has the potential for providing a new range of insights into the process, and for devising simple models for predicting composition evolution in multicomponent systems
    corecore