360 research outputs found

    Quantum tunneling of magnetization in dipolar spin-1 condensates under external fields

    Full text link
    We study the macroscopic quantum tunneling of magnetization of the F=1 spinor condensate interacting through dipole-dipole interaction with an external magnetic field applied along the longitudinal or transverse direction. We show that the ground state energy and the effective magnetic moment of the system exhibit an interesting macroscopic quantum oscillation phenomenon originating from the oscillating dependence of thermodynamic properties of the system on the vacuum angle. Tunneling between two degenerate minima are analyzed by means of an effective potential method and the periodic instanton method.Comment: 2 figures, accepted PR

    Measurement of a Mixed Spin Channel Feshbach Resonance in Rubidium 87

    Full text link
    We report on the observation of a mixed spin channel Feshbach resonance at the low magnetic field value of (9.09 +/- 0.01) G for a mixture of |2,-1> and |1,+1> states in 87Rb. This mixture is important for applications of multi-component BECs of 87Rb, e.g. in spin mixture physics and for quantum entanglement. Values for position, height and width of the resonance are reported and compared to a recent theoretical calculation of this resonance.Comment: 4 pages, 3 figures minor changes, actualized citation

    Bose-Einstein condensation at constant temperature

    Full text link
    We present a novel experimental approach to Bose-Einstein condensation by increasing the particle number of the system at almost constant temperature. In particular the emergence of a new condensate is observed in multi-component F=1 spinor condensates of 87-Rb. Furthermore we develop a simple rate-equation model for multi-component BEC thermodynamics at finite temperature which well reproduces the measured effects.Comment: 4 pages, 3 figures, RevTe

    Dynamics of F=2 Spinor Bose-Einstein Condensates

    Full text link
    We experimentally investigate and analyze the rich dynamics in F=2 spinor Bose-Einstein condensates of Rb87. An interplay between mean-field driven spin dynamics and hyperfine-changing losses in addition to interactions with the thermal component is observed. In particular we measure conversion rates in the range of 10^-12 cm^3/s for spin changing collisions within the F=2 manifold and spin-dependent loss rates in the range of 10^-13 cm^3/s for hyperfine-changing collisions. From our data we observe a polar behavior in the F=2 ground state of Rb87, while we measure the F=1 ground state to be ferromagnetic. Furthermore we see a magnetization for condensates prepared with non-zero total spin.Comment: 4 pages, 2 figures, RevTe

    Dynamics and thermodynamics in spinor quantum gases

    Full text link
    We discuss magnetism in spinor quantum gases theoretically and experimentally with emphasis on temporal dynamics of the spinor order parameter in the presence of an external magnetic field. In a simple coupled Gross-Pitaevskii picture we observe a dramatic suppression of spin dynamics due to quadratic Zeeman ''dephasing''. In view of an inhomogeneous density profile of the trapped condensate we present evidence of spatial variations of spin dynamics. In addition we study spinor quantum gases as a model system for thermodynamics of Bose-Einstein condensation. As a particular example we present measurements on condensate magnetisation due to the interaction with a thermal bath.Comment: 8 pages, 7 figure

    Superfluid vs Ferromagnetic Behaviour in a Bose Gas of Spin-1/2 Atoms

    Full text link
    We study the thermodynamic phases of a gas of spin-1/2 atoms in the Hartree-Fock approximation. Our main result is that, for repulsive or weakly-attractive inter-component interaction strength, the superfluid and ferromagnetic phase transitions occur at the same temperature. For strongly-attractive inter-component interaction strength, however, the ferromagnetic phase transition occurs at a higher temperature than the superfluid phase transition. We also find that the presence of a condensate acts as an effective magnetic field that polarizes the normal cloud. We finally comment on the validity of the Hartree-Fock approximation in describing different phenomena in this system.Comment: 10 pages, 2 figure

    A new member of the family Micromonosporaceae, Planosporangium flavigriseum gen. nov., sp. nov.

    Get PDF
    A novel actinomycete, designated strain YIM 46034(T), was isolated from an evergreen broadleaved forest at Menghai, in southern Yunnan Province, China. Phenotypic characterization and 16S rRNA gene sequence analysis indicated that the strain belonged to the family Micromanosporaceae. Strain YIM 46034(T) showed more than 3% 16S rRNA gene sequence divergence from recognized species of genera in the family Micromonosporaceae. Characteristic features of strain YIM 46034(T) were the production of two types of spores, namely motile spores, which were formed in sporangia produced on substrate mycelia, and single globose spores, which were observed on short sporophores of the substrate mycelia. The cell wall contained meso-diaminopimelic acid, glycine, arabinose and xylose, which are characteristic components of cell-wall chemotype 11 of actinomycetes. Phosphatidylethanolamine was the major phospholipid (phospholipid type 11). Based on morphological, chemotaxonomic, phenotypic and genetic characteristics, strain YIM 46034(T) is considered to represent a novel species of a new genus in the family Micromonosporaceae, for which the name Planosporangium flavigriseum gen. nov., sp. nov. is proposed. The type strain of Planosporangium flavigriseum is YIM 46034(T) (=CCTCC AA 205013(T) =DSM 44991(T))

    Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose condensate

    Full text link
    A central goal in condensed matter and modern atomic physics is the exploration of many-body quantum phases and the universal characteristics of quantum phase transitions in so far as they differ from those established for thermal phase transitions. Compared with condensed-matter systems, atomic gases are more precisely constructed and also provide the unique opportunity to explore quantum dynamics far from equilibrium. Here we identify a second-order quantum phase transition in a gaseous spinor Bose-Einstein condensate, a quantum fluid in which superfluidity and magnetism, both associated with symmetry breaking, are simultaneously realized. 87^{87}Rb spinor condensates were rapidly quenched across this transition to a ferromagnetic state and probed using in-situ magnetization imaging to observe spontaneous symmetry breaking through the formation of spin textures, ferromagnetic domains and domain walls. The observation of topological defects produced by this symmetry breaking, identified as polar-core spin-vortices containing non-zero spin current but no net mass current, represents the first phase-sensitive in-situ detection of vortices in a gaseous superfluid.Comment: 6 pages, 4 figure

    Spin dynamics of a trapped spin-1 Bose Gas above the Bose-Einstein transition temperature

    Full text link
    We study collective spin oscillations in a spin-1 Bose gas above the Bose-Einstein transition temperature. Starting from the Heisenberg equation of motion, we derive a kinetic equation describing the dynamics of a thermal gas with the spin-1 degree of freedom. Applying the moment method to the kinetic equation, we study spin-wave collective modes with dipole symmetry. The dipole modes in the spin-1 system are found to be classified into the three type of modes. The frequency and damping rate are obtained as functions of the peak density. The damping rate is characterized by three relaxation times associated with collisions.Comment: 19 pages, 5 figur
    corecore