372 research outputs found
Measurement of a Mixed Spin Channel Feshbach Resonance in Rubidium 87
We report on the observation of a mixed spin channel Feshbach resonance at
the low magnetic field value of (9.09 +/- 0.01) G for a mixture of |2,-1> and
|1,+1> states in 87Rb. This mixture is important for applications of
multi-component BECs of 87Rb, e.g. in spin mixture physics and for quantum
entanglement. Values for position, height and width of the resonance are
reported and compared to a recent theoretical calculation of this resonance.Comment: 4 pages, 3 figures minor changes, actualized citation
Walter Campbell:A distinguished life
An efficient and simple synthesis approach to form stable (68) Ga-labeled nanogels is reported and their fundamental properties investigated. Nanogels are obtained by self-assembly of amphiphilic statistical prepolymers derivatised with chelating groups for radiometals. The resulting nanogels exhibit a well-defined spherical shape with a diameter of 290 +/- 50 nm. The radionuclide (68) Ga is chelated in high radiochemical yields in an aqueous medium at room temperature. The phagocytosis assay demonstrates a highly increased internalization of nanogels by activated macrophages. Access to these (68) Ga-nanogels will allow the investigation of general behavior and clearance pathways of nanogels in vivo by nuclear molecular imaging
Bose-Einstein condensation at constant temperature
We present a novel experimental approach to Bose-Einstein condensation by
increasing the particle number of the system at almost constant temperature. In
particular the emergence of a new condensate is observed in multi-component F=1
spinor condensates of 87-Rb. Furthermore we develop a simple rate-equation
model for multi-component BEC thermodynamics at finite temperature which well
reproduces the measured effects.Comment: 4 pages, 3 figures, RevTe
Dynamics of F=2 Spinor Bose-Einstein Condensates
We experimentally investigate and analyze the rich dynamics in F=2 spinor
Bose-Einstein condensates of Rb87. An interplay between mean-field driven spin
dynamics and hyperfine-changing losses in addition to interactions with the
thermal component is observed. In particular we measure conversion rates in the
range of 10^-12 cm^3/s for spin changing collisions within the F=2 manifold and
spin-dependent loss rates in the range of 10^-13 cm^3/s for hyperfine-changing
collisions. From our data we observe a polar behavior in the F=2 ground state
of Rb87, while we measure the F=1 ground state to be ferromagnetic. Furthermore
we see a magnetization for condensates prepared with non-zero total spin.Comment: 4 pages, 2 figures, RevTe
The physicochemical habitat of Sclerolinum sp., at Hook Ridge hydrothermal vent, Bransfield Strait, Antarctica
At Hook Ridge hydrothermal vent, a new species of Sclerolinum (Monilifera, Siboglinidae) was found at a water depth of 1,045 m. On the basis of investigations of multicores and gravity cores, the species habitat is characterized. Sclerolinum does not occur in sediments that are most strongly influenced by hydrothermal fluids, probably because of high temperature (up to 49°C) and precipitation of siliceous crusts. About 800 individuals m-2 occur in sediments that are only weakly exposed to hydrothermal flow and have the following characteristics: 20°C (15 cm sediment depth) to 21.5°C (bottom water), 18-40 cm yr-1 advection rates, pH 5.5, <25 µmol L-1 methane, <170 µmol L-1 sulfide, and <0.0054 mol m-2 yr-1 sulfide flux. Comparison with geochemical data from other reducing sediments indicates that the two groups of Siboglinidae, Monilifera and Frenulata, occur in sediments with low sulfide concentration and flux. In contrast, sulfurbased chemosynthetic organisms that typically occur at hydrothermal vents and cold seeps (e.g., Vestimentifera, vesicomyid clams, and bacterial mats) occur in sediments with higher sulfide availability; threshold values are around 500 µmol L-1 sulfide and 0.1 mol m-2 yr-1 sulfide fluxes. We did not find typical hydrothermal vent species at Hook Ridge hydrothermal vent, which might be explained by the unfavorable physicochemical habitat: At sites inhabited by Sclerolinum, sulfide availability appears to be too low, whereas at sites with higher sulfide availability, the temperatures might be too high, siliceous crust precipitation could preclude their occurrence, or both
Dynamics and thermodynamics in spinor quantum gases
We discuss magnetism in spinor quantum gases theoretically and experimentally
with emphasis on temporal dynamics of the spinor order parameter in the
presence of an external magnetic field. In a simple coupled Gross-Pitaevskii
picture we observe a dramatic suppression of spin dynamics due to quadratic
Zeeman ''dephasing''. In view of an inhomogeneous density profile of the
trapped condensate we present evidence of spatial variations of spin dynamics.
In addition we study spinor quantum gases as a model system for thermodynamics
of Bose-Einstein condensation. As a particular example we present measurements
on condensate magnetisation due to the interaction with a thermal bath.Comment: 8 pages, 7 figure
Superfluid vs Ferromagnetic Behaviour in a Bose Gas of Spin-1/2 Atoms
We study the thermodynamic phases of a gas of spin-1/2 atoms in the
Hartree-Fock approximation. Our main result is that, for repulsive or
weakly-attractive inter-component interaction strength, the superfluid and
ferromagnetic phase transitions occur at the same temperature. For
strongly-attractive inter-component interaction strength, however, the
ferromagnetic phase transition occurs at a higher temperature than the
superfluid phase transition. We also find that the presence of a condensate
acts as an effective magnetic field that polarizes the normal cloud. We finally
comment on the validity of the Hartree-Fock approximation in describing
different phenomena in this system.Comment: 10 pages, 2 figure
Spin dynamics of a trapped spin-1 Bose Gas above the Bose-Einstein transition temperature
We study collective spin oscillations in a spin-1 Bose gas above the
Bose-Einstein transition temperature. Starting from the Heisenberg equation of
motion, we derive a kinetic equation describing the dynamics of a thermal gas
with the spin-1 degree of freedom. Applying the moment method to the kinetic
equation, we study spin-wave collective modes with dipole symmetry. The dipole
modes in the spin-1 system are found to be classified into the three type of
modes. The frequency and damping rate are obtained as functions of the peak
density. The damping rate is characterized by three relaxation times associated
with collisions.Comment: 19 pages, 5 figur
- …