56 research outputs found

    GPR measurements to assess the Emeelt active fault's characteristics in a highly smooth topographic context, Mongolia

    No full text
    International audienceTo estimate the seismic hazard, the geometry (dip, length and orientation) and the dynamics (type of displacements and amplitude) of the faults in the area of interest need to be understood. In this paper, in addition to geomorphologic observations, we present the results of two ground penetrating radar (GPR) campaigns conducted in 2010 and 2011 along the Emeelt fault in the vicinity of Ulaanbaatar, capital of Mongolia, located in an intracontinental region with low deformation rate that induces long recurrence time between large earthquakes. As the geomorphology induced by the fault activity has been highly smoothed by erosion processes since the last event, the fault location and geometry is difficult to determine precisely. However, by using GPR first, a non-destructive and fast investigation, the fault and the sedimentary deposits near the surface can be characterized and the results can be used for the choice of trench location. GPR was performed with a 50 MHz antenna over 2-D lines and with a 500 MHz antenna for pseudo-3-D surveys. The 500 MHz GPR profiles show a good consistency with the trench observations, dug next to the pseudo-3-D surveys. The 3-D 500 MHz GPR imaging of a palaeochannel crossed by the fault allowed us to estimate its lateral displacement to be about 2 m. This is consistent with a right lateral strike-slip displacement induced by an earthquake around magnitude 7 or several around magnitude 6. The 2-D 50 MHz profiles, recorded perpendicular to the fault, show a strong reflection dipping to the NE, which corresponds to the fault plane. Those profiles provided complementary information on the fault such as its location at shallow depth, its dip angle (from 23 ‱ to 35 ‱) and define its lateral extension. Central Asia is known for its high level of seismic hazards, especially Mongolia, which has been one of the most seismically active intracontinental regions in the world with four large earthquakes (magnitude around 8) along its active faults in the western part of the country during the last century (Khilko et al. 1985). The deformation in Mongolia is located between compressive structures related to the collision and penetration of the Indian plate into the Eurasian plate and extensive structures in the north of the country related with the Baykal rift (Tapponnier & Molnar 1979; Baljinnyam et al. 1993; Schlupp 1996; Bayasgalan & Jackson 1999). The seismic activity observed in the vicinity of Ulaanbaatar (UB), capital of Mongolia, is relatively low compared to the activity observed in western Mongolia. Nevertheless, since 2005, the seismic activity around UB not only has increased, but is also organized (see Fig. 1) at the west of UB along two perpendicular directions, which determine two active faults: Emeelt fault, discovered in 2008 (NNW-SSE direction, 25-km-long minimum and situated about 10 km W of UB) and Hustai fault (WSW–ENE direction, 80 km long, with its NE tip at less than 20 km west of UB); their length and morphology indicate that they can produce earthquakes of magnitude 6.5–7.5 (Schlupp et al. 2012). Most of the Mongolian population (1.2 million over 3 million) is concentrated at UB, which is the main political and economical centre of the country. Hence, the study of seismic hazard and the estimation of the probability of future destructive earthquakes are of primary importance for the country (Dugarmaa et al. 2006). Since the last large earthquake, the faults geomorphology has been highly smoothed by erosional processes and the exact location of the fault plane surface rupture is thus hidden within a several metre wide strip. The GPR method has been proven to give good and useful results to characterize faults by identifying offsets of radar reflections (Malik et al. 2007; Christie et al. 2009; Yalçiner et al. 2013) an

    A Probabilistic Approach to Seismic Hazard in Metropolitan France

    Get PDF
    In this study, we applied a probabilistic methodology to seismic hazard assessment in metropolitan France. For that purpose we determined an attenuation law adapted to the French context. This law holds for peak ground acceleration on stiff bedrock for earthquakes with local magnitudes between 2.5 and 5.6 recorded in near field (at distances between 3 and 50 km). Geological conditions are taken into account by means of a three-categories classification of lithologies based on a 1/1,000,000 geological map. The seismotectonic zonation consists of areas of diffuse seismicity characterized by a frequency-magnitude distribution. In southeastern France, active faults are considered in a test case and are assumed to follow the characteristic earthquake model. We performed hazard curves for six French cities and maps of peak horizontal ground accelerations expected for return periods of 475, 975, and 1975 years in the country. Sensitivity tests have been performed. The uncertainty introduced by ground-motion variability seems minor compared with that due to the choice of the attenuation law. This study points to the importance of testing internal consistency of the various data and laws used in any seismic hazard analysis (in particular, here the type of magnitude used to predict ground motion). If not, some systematic bias is introduced that may result in systematic errors on peak ground acceleration determination. We also show that the introduction of possibly very large and infrequent events, known only from paleoseismic investigations, may have a dramatic impact on the hazard, especially when long periods of time are considered

    Molecular evolution of the human SRPX2 gene that causes brain disorders of the Rolandic and Sylvian speech areas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The X-linked <it>SRPX2 </it>gene encodes a Sushi Repeat-containing Protein of unknown function and is mutated in two disorders of the Rolandic/Sylvian speech areas. Since it is linked to defects in the functioning and the development of brain areas for speech production, <it>SRPX2 </it>may thus have participated in the adaptive organization of such brain regions. To address this issue, we have examined the recent molecular evolution of the <it>SRPX2 </it>gene.</p> <p>Results</p> <p>The complete coding region was sequenced in 24 human X chromosomes from worldwide populations and in six representative nonhuman primate species. One single, fixed amino acid change (R75K) has been specifically incorporated in human SRPX2 since the human-chimpanzee split. The R75K substitution occurred in the first sushi domain of SRPX2, only three amino acid residues away from a previously reported disease-causing mutation (Y72S). Three-dimensional structural modeling of the first sushi domain revealed that Y72 and K75 are both situated in the hypervariable loop that is usually implicated in protein-protein interactions. The side-chain of residue 75 is exposed, and is located within an unusual and SRPX-specific protruding extension to the hypervariable loop. The analysis of non-synonymous/synonymous substitution rate (Ka/Ks) ratio in primates was performed in order to test for positive selection during recent evolution. Using the branch models, the Ka/Ks ratio for the human branch was significantly different (p = 0.027) from that of the other branches. In contrast, the branch-site tests did not reach significance. Genetic analysis was also performed by sequencing 9,908 kilobases (kb) of intronic <it>SRPX2 </it>sequences. Despite low nucleotide diversity, neither the HKA (Hudson-Kreitman-Aguadé) test nor the Tajima's D test reached significance.</p> <p>Conclusion</p> <p>The R75K human-specific variation occurred in an important functional loop of the first sushi domain of SRPX2, indicating that this evolutionary mutation may have functional importance; however, positive selection for R75K could not be demonstrated. Nevertheless, our data contribute to the first understanding of molecular evolution of the human <it>SPRX2 </it>gene. Further experiments are now required in order to evaluate the possible consequences of R75K on SRPX2 interactions and functioning.</p

    Rapid response to the M_w 4.9 earthquake of November 11, 2019 in Le Teil, Lower RhĂŽne Valley, France

    Get PDF
    On November 11, 2019, a Mw 4.9 earthquake hit the region close to Montelimar (lower RhĂŽne Valley, France), on the eastern margin of the Massif Central close to the external part of the Alps. Occuring in a moderate seismicity area, this earthquake is remarkable for its very shallow focal depth (between 1 and 3 km), its magnitude, and the moderate to large damages it produced in several villages. InSAR interferograms indicated a shallow rupture about 4 km long reaching the surface and the reactivation of the ancient NE-SW La Rouviere normal fault in reverse faulting in agreement with the present-day E-W compressional tectonics. The peculiarity of this earthquake together with a poor coverage of the epicentral region by permanent seismological and geodetic stations triggered the mobilisation of the French post-seismic unit and the broad French scientific community from various institutions, with the deployment of geophysical instruments (seismological and geodesic stations), geological field surveys, and field evaluation of the intensity of the earthquake. Within 7 days after the mainshock, 47 seismological stations were deployed in the epicentral area to improve the Le Teil aftershocks locations relative to the French permanent seismological network (RESIF), monitor the temporal and spatial evolution of microearthquakes close to the fault plane and temporal evolution of the seismic response of 3 damaged historical buildings, and to study suspected site effects and their influence in the distribution of seismic damage. This seismological dataset, completed by data owned by different institutions, was integrated in a homogeneous archive and distributed through FDSN web services by the RESIF data center. This dataset, together with observations of surface rupture evidences, geologic, geodetic and satellite data, will help to unravel the causes and rupture mechanism of this earthquake, and contribute to account in seismic hazard assessment for earthquakes along the major regional CĂ©venne fault system in a context of present-day compressional tectonics

    SĂ©isme du Teil. 11 novembre 2019. Le Teil. Eboulement de pierres

    No full text
    This photo was taken during a Macroseismic Response Group mission that took place November 18-22, 2019, following the November 11, 2019, magnitude 5.2 Mlv earthquake. A rockfall can be seen in the commune of Le Teil. This is the most affected commune, with collapsed buildings. From the point of view of intensity, the earthquake on this town reached an intensity of VII (on a scale from I to XII). The very shallow depth of the focus of the earthquake (about 2 km), as well as the propagation of the rupture to the surface, imply a much greater intensity of shaking in the epicentral area (up to about 15 km from the epicenter) than for more conventional events of the same magnitude (depth around 10 km). The significant damage to the town of Le Teil is an illustration. This earthquake is the largest in mainland France in terms of impact (extent of intensity VI and above, and damage to the most vulnerable buildings) for 52 years (since the earthquake of Arette in 1967). The macro-seismic intervention group intervenes on the sites of earthquakes to evaluate the intensity of the tremor, from the effects of the earthquake on structures, buildings, individual houses. These field observations complement the testimonies provided by citizens on the france-seisme website. They are one of the elements that participate in the establishment of the state of natural disaster by the authorities. The macro-seismic survey also completes the other analyses carried out by scientists within the French seismological and geodesic network RĂ©sif, in particular within the framework of its Transverse Action Seismicity. RĂ©sif is a national research infrastructure dedicated to the observation and understanding of the Earth's internal structure and dynamics. RĂ©sif is based on high technology observation networks, composed of seismological, geodesic and gravimetric instruments deployed in a dense way on the whole French territory. The data collected allow to study with a high spatio-temporal resolution the ground deformation, the superficial and deep structures, the seismicity at the local and global scale and the natural hazards, and more particularly the seismic ones, on the French territory. RĂ©sif is part of the European (EPOS - European Plate Observing System) and global systems of instruments allowing to image the interior of the Earth in its entirety and to study many natural phenomena.Cette photo a Ă©tĂ© prise lors d'une mission du Groupe d'intervention macrosismique qui s'est dĂ©roulĂ©e du 18 au 22 novembre 2019, suite au sĂ©isme du 11 novembre 2019 de magnitude 5.2 Mlv. On peut voir un Ă©boulement de pierres sur la commune du Teil. Il s'agit de la commune la plus touchée, avec des effondrements de bâtiments. Du point de vue des intensitĂ©s, le sĂ©isme sur cette commune a atteint une intensitĂ© de VII (sur une Ă©chelle allant de I Ă  XII). La très faible profondeur du foyer du séisme (environ 2 km), ainsi que la propagation de la rupture jusqu’en surface, impliquent une intensité des secousses bien plus importante dans la zone épicentrale (jusqu’à environ 15 km de l’épicentre) que pour les évènements plus classiques de même magnitude (profondeur autour de 10 km). Les dommages importants sur la commune du Teil en sont une illustration. Ce séisme est le plus important en métropole en termes d’impact (étendue des intensités VI et plus, et des dégâts sur les bâtiments les plus vulnérables) depuis 52 ans (depuis le séisme d’Arette de 1967). Le groupe d'intervention macrosismique intervient sur les lieux des tremblements de terre pour Ă©valuer l'intensitĂ© de la secousse, Ă  partir des effets du sĂ©isme sur les structures, bĂątiments, maisons individuelles. Ces observations de terrain complĂštent les tĂ©moignages fournis par les citoyens sur le site france-seisme. Elles sont l'un des Ă©lĂ©ments qui participent Ă  l'Ă©tablissement de l'Ă©tat de catastrophe naturelle par les autoritĂ©s. L'enquĂȘte macrosismique complĂšte Ă©galement les autres analyses rĂ©alisĂ©es les scientifiques au sein de la communautĂ© du RĂ©seau sismologique et gĂ©odĂ©sique français RĂ©sif, notamment dans le cadre de son Action transverse sismicitĂ©. RĂ©sif est une infrastructure de recherche nationale dĂ©diĂ©e Ă  l’observation et la comprĂ©hension de la structure et de la dynamique Terre interne. RĂ©sif se base sur des rĂ©seaux d’observation de haut niveau technologique, composĂ©s d’instruments sismologiques, gĂ©odĂ©siques et gravimĂ©triques dĂ©ployĂ©s de maniĂšre dense sur tout le territoire français. Les donnĂ©es recueillies permettent d’étudier avec une haute rĂ©solution spatio-temporelle la dĂ©formation du sol, les structures superficielles et profondes, la sismicitĂ© Ă  l’échelle locale et globale et les alĂ©as naturels, et plus particuliĂšrement sismiques, sur le territoire français. RĂ©sif s’intĂšgre aux dispositifs europĂ©ens (EPOS - European Plate Observing System) et mondiaux d’instruments permettant d’imager l’intĂ©rieur de la Terre dans sa globalitĂ© et d’étudier de nombreux phĂ©nomĂšnes naturels
    • 

    corecore