9 research outputs found

    Dual Supermassive Black Hole Candidates in the AGN and Galaxy Evolution Survey

    Full text link
    Dual supermassive black holes (SMBHs) with kiloparsec scale separations in merger-remnant galaxies are informative tracers of galaxy evolution, but the avenue for identifying them in large numbers for such studies is not yet clear. One promising approach is to target spectroscopic signatures of systems where both SMBHs are fueled as dual active galactic nuclei (AGNs), or where one SMBH is fueled as an offset AGN. Dual AGNs may produce double-peaked narrow AGN emission lines, while offset AGNs may produce single-peaked narrow AGN emission lines with line-of-sight velocity offsets relative to the host galaxy. We search for such dual and offset systems among 173 Type 2 AGNs at z<0.37 in the AGN and Galaxy Evolution Survey (AGES), and we find two double-peaked AGNs and five offset AGN candidates. When we compare these results to a similar search of the DEEP2 Galaxy Redshift Survey and match the two samples in color, absolute magnitude, and minimum velocity offset, we find that the fraction of AGNs that are dual SMBH candidates increases from z=0.25 to z=0.7 by a factor of ~6 (from 2/70 to 16/91, or 2.9% to 18%). This may be associated with the rise in the galaxy merger fraction over the same cosmic time. As further evidence for a link with galaxy mergers, the AGES offset and dual AGN candidates are tentatively ~3 times more likely than the overall AGN population to reside in a host galaxy that has a companion galaxy (from 16/173 to 2/7, or 9% to 29%). Follow-up observations of the seven offset and dual AGN candidates in AGES will definitively distinguish velocity offsets produced by dual SMBHs from those produced by narrow-line region kinematics, and will help sharpen our observational approach to detecting dual SMBHs.Comment: 10 pages, 8 figures, accepted for publication in Ap

    Engineering of extracellular matrix scaffolds via hollow fiber cell culture

    Get PDF
    Extracellular matrix (ECM) tissue scaffolds are seeing increased use for clinical applications, as they significantly decrease the time course of healing for injured tissues; however, the use of animal-sourced matrix for these scaffolds introduces xenogeneic epitopes into the patient toward which deleterious immune responses are directed, decreasing the effectiveness of the scaffold. ECM scaffolds produced in vitro have potential to minimize the foreign body response, as ECM can be cultured using human cell lines and decellularized to produce an allogeneic scaffold with high biocompatibility. The primary challenge of producing ECM-based therapeutics in vitro is fabricating such material in a manner which approximates the composition and architecture of native matrix while maintaining high yield and ease-of-handling. In previous work, we have demonstrated that sacrificial open-cell foams can be used for the production of ECM scaffolds with properties approximating those of native tissues.1 Herein we demonstrate a novel approach for the production of continuous threads of extracellular matrix by statically culturing ECM-secreting fibroblasts in the lumina of mesoporous hollow fiber membranes (HFMs). This approach exploits the fact that mesoporous HFMs prevent cross-membrane transport of high molecular weight proteins produced by cells in their lumina, while allowing for diffusion of low molecular weight cell medium components. Please click Additional Files below to see the full abstract

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    THE SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 SPECTROSCOPIC M DWARF CATALOG. I. DATA

    No full text
    We present a spectroscopic catalog of 70,841 visually inspected M dwarfs from the seventh data release of the Sloan Digital Sky Survey. For each spectrum, we provide measurements of the spectral type, a number of molecular band heads, and the Hα, Hβ, Hγ, Hδ, and Ca II K emission lines. In addition, we calculate the metallicity-sensitive parameter ζ and identify a relationship between ζ and the g – r and r – z colors of M dwarfs. We assess the precision of our spectral types (which were assigned by individual examination), review the bulk attributes of the sample, and examine the magnetic activity properties of M dwarfs, in particular those traced by the higher order Balmer transitions. Our catalog is cross-matched to Two Micron All Sky Survey infrared data, and contains photometric distances for each star. Finally, we identify eight new late-type M dwarfs that are possibly within 25 pc of the Sun. Future studies will use these data to thoroughly examine magnetic activity and kinematics in late-type M dwarfs and examine the chemical and dynamical history of the local Milky Way.National Science Foundation (U.S.). Division of Astronomical Sciences (Grant 06-07644
    corecore