Dual supermassive black holes (SMBHs) with kiloparsec scale separations in
merger-remnant galaxies are informative tracers of galaxy evolution, but the
avenue for identifying them in large numbers for such studies is not yet clear.
One promising approach is to target spectroscopic signatures of systems where
both SMBHs are fueled as dual active galactic nuclei (AGNs), or where one SMBH
is fueled as an offset AGN. Dual AGNs may produce double-peaked narrow AGN
emission lines, while offset AGNs may produce single-peaked narrow AGN emission
lines with line-of-sight velocity offsets relative to the host galaxy. We
search for such dual and offset systems among 173 Type 2 AGNs at z<0.37 in the
AGN and Galaxy Evolution Survey (AGES), and we find two double-peaked AGNs and
five offset AGN candidates. When we compare these results to a similar search
of the DEEP2 Galaxy Redshift Survey and match the two samples in color,
absolute magnitude, and minimum velocity offset, we find that the fraction of
AGNs that are dual SMBH candidates increases from z=0.25 to z=0.7 by a factor
of ~6 (from 2/70 to 16/91, or 2.9% to 18%). This may be associated with the
rise in the galaxy merger fraction over the same cosmic time. As further
evidence for a link with galaxy mergers, the AGES offset and dual AGN
candidates are tentatively ~3 times more likely than the overall AGN population
to reside in a host galaxy that has a companion galaxy (from 16/173 to 2/7, or
9% to 29%). Follow-up observations of the seven offset and dual AGN candidates
in AGES will definitively distinguish velocity offsets produced by dual SMBHs
from those produced by narrow-line region kinematics, and will help sharpen our
observational approach to detecting dual SMBHs.Comment: 10 pages, 8 figures, accepted for publication in Ap