1,972 research outputs found

    Quantum computing with spatially delocalized qubits

    Get PDF
    We analyze the operation of quantum gates for neutral atoms with qubits that are delocalized in space, i.e., the computational basis states are defined by the presence of a neutral atom in the ground state of one out of two trapping potentials. The implementation of single qubit gates as well as a controlled phase gate between two qubits is discussed and explicit calculations are presented for rubidium atoms in optical microtraps. Furthermore, we show how multi-qubit highly entangled states can be created in this scheme.Comment: 4 pages, 4 figure

    Constraints on mantle ^3He fluxes and deep-sea circulation from an oceanic general circulation model

    Get PDF
    We have simulated the steady-state distribution of helium in the deep sea to investigate the magnitude and spatial and temporal variability of mantle degassing and to characterize deep-sea circulation and ventilation. The simulation was produced by linking a simple source function for helium injected at mid-ocean ridges with an oceanic general circulation model (GCM). By assuming that the flux of mantle helium is linearly proportional to the seafloor spreading rate and by using previous estimates for the total flux of mantle helium into the oceans, the GCM yields an oceanic ^3He distribution which is in qualitative agreement with observations both in overall magnitude and in general distribution. This provides new evidence that the flux of mantle ^3He into the oceans is about 1000 mol/yr and that mid-ocean ridges are the dominant source of mantle helium. Although the match with observations is good in the Pacific and Indian Oceans, the simulated ^3He anomalies throughout the Atlantic Ocean are much higher than has been measured. Because the GCM is thought to reproduce Atlantic circulation reasonably well, this discrepancy suggests an error in the helium source function. Either helium injection is not a linear function of seafloor emplacement rate, or eruption and concomitant degassing are highly episodic at the slow spreading rates characteristic of the Mid-Atlantic Ridge (MAR). The latter explanation would imply minimal volcanic activity along the entire length of the MAR over the last few centuries. In addition to constraints on the degassing flux, our work provides information on the transport and ventilation of deep ocean waters and constrains the degree to which current GCMs can reproduce deep-water circulation patterns. While the results generally support the GCM's abyssal circulation, our simulation reveals regions of overly-intense lateral diffusion and upwelling in the model, particularly in the equatorial Pacific. Similarly, there appears to be insufficient production of He-ventilated bottom waters in the model Antarctic. These observations suggest that further refinement of the GCM abyssal circulation is required

    Correction to “Importance of carbon-nitrogen interactions and ozone on ecosystem hydrology during the 21st century”

    Get PDF
    Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 114 (2009): G03009, doi:10.1029/2009JG001083

    Quantifying the Likelihood of Regional Cimate Change: A hybridized Approach

    Get PDF
    The growing need for risk-based assessments of impacts and adaptation to climate change calls for increased capability in climate projections: the quantification of the likelihood of regional outcomes and the representation of their uncertainty. Herein, we present a technique that extends the latitudinal projections of the 2-D atmospheric model of the MIT Integrated Global System Model (IGSM) by applying longitudinally resolved patterns from observations, and from climate-model projections archived from exercises carried out for the 4th Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC). The method maps the IGSM zonal means across longitude using a set of transformation coefficients, and we demonstrate this approach in application to near-surface air temperature and precipitation, for which high-quality observational datasets and model simulations of climate change are available. The current climatology of the transformation coefficients is observationally based. To estimate how these coefficients may alter with climate, we characterize the climate models’ spatial responses, relative to their zonal mean, from transient increases in trace-gas concentrations and then normalize these responses against their corresponding transient global temperature responses. This procedure allows for the construction of meta-ensembles of regional climate outcomes, combining the ensembles of the MIT IGSM—which produce global and latitudinal climate projections, with uncertainty, under different global climate policy scenarios—with regionally resolved patterns from the archived IPCC climate-model projections. This approach also provides a hybridization of the climate-model longitudinal projections with the global and latitudinal patterns projected by the IGSM, and can be applied to any given state or flux variable that has the sufficient observational and model-based information.U.S. Department of Energy’s Abrupt Climate Change program, grant # DE-FG02-08ER64597

    Nitrogen effect on carbon-water coupling in forests, grasslands, and shrublands in the arid western United States

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): G03023, doi:10.1029/2010JG001621.As greenhouse gases, including CO2, accumulate in the atmosphere, the western United States is predicted to undergo large-scale climate warming and reduced summer precipitation in the coming decades. In this study we explore the role of these climate changes with elevated CO2 to determine the plant physiological response on primary productivity and associated feedbacks on evapotranspiration (ET) and runoff using a biogeochemistry model, TEM-Hydro, with downscaled climate data for the western United States from the NCAR CCSM3 A2 scenario. Net primary productivity increases by 32% in forests due to feedbacks between warmer temperatures and enhanced nitrogen mineralization but decreases in shrublands by 24% due to excessive drying and reduced nitrogen mineralization. Warming directly increases nitrogen mineralization rates but indirectly decreases them by reducing soil moisture, so the net effect is highly dependent on climatic conditions within each biome. Increased soil moisture resulting from larger water use efficiency from the elevated CO2 leads to more net nitrogen mineralization in forests, which reduces N-limiting conditions. The effect of CO2 on stomatal conductance is therefore enhanced because of its effect on reducing nitrogen limiting conditions. Runoff decreases over the 21st century by 22% in forests, 58% in grasslands, and 67% in shrublands due to the reduced precipitation in each region but is modulated by the plant-induced changes in ET. The role of moisture limitation is therefore a crucial regulator of nitrogen limitation, which determines the future productivity and water availability in the West.This study was funded by the Department of Energy, Basic Research and Modeling to Support Integrated Assessment, DE‐FG02‐08ERG64648

    CliCrop: a Crop Water-Stress and Irrigation Demand Model for an Integrated Global Assessment Model Approach

    Get PDF
    http://globalchange.mit.edu/research/publications/2264This paper describes the use of the CliCrop model in the context of climate change general assessment modeling. The MIT Integrated Global System Model (IGSM) framework is a global integrated assessment modeling framework that uses emission predictions and economic outputs from the MIT Emission Prediction and Policy Analysis (EPPA) model and earth system modeling predictions from the IGSM to drive a land system component, a crop model (CliCrop) and a Water Resource System (WRS) model. The global Agriculture and Water System are dependant upon and interlinked with the global climate system. As irrigated agriculture provides 60% of grains and 40% of all crop production on 20% of global crop lands and accounts for 80% of global water consumption, it is crucial that the agricultural-water linkage be properly modeled. Crop models are used to predict future yields, irrigation demand and to understand the effect of crop and soil type on food productivity and soil fertility. In the context of an integrated global assessment, a crop water-stress and irrigation demand model must meet certain specifications that are different for other crop models; it needs to be global, fast and generic with a minimal set of inputs. This paper describes how CliCrop models the physical and biological processes of crop growth and yield production and its use within the MIT Integrated Global System Model (IGSM) framework, including the data inputs. This paper discusses the global data bases used as input to CliCrop and provides a comparison of the accuracy of CliCrop with the detailed biological-based crop model DSSAT as well as with measured crop yields over the U.S. at the country level using reanalyzed weather data. In both cases CliCrop performed well and the analysis validated its use for climate change impact assessment. We then show why correctly modeling the soil is important for irrigation demand calculation, especially in temperate areas. Finally, we discuss a method to estimate actual water withdrawal from modeled physical crop requirements using U.S. historical data.The initial funding for CliCrop was provided by USAID under a program on climate change adaptation in Niger. Further funding was provided by UN University World Institute for Development Economics Research for the Application and Development of CliCrop in Africa, the authors would like to particularly thank Prof. Finn Tarp, Prof. Channing Arndt and Dr. James Thurlow for their support. The authors also would like to thank Dr. Jawoo Koo of IFPRI for his review and contributions to the software development. The authors also gratefully acknowledge additional financial support for this work provided by the MIT Joint Program on the Science and Policy of Global Change through a consortium of industrial sponsors and Federal grants. Development of the IGSM applied in this research was supported by the U.S. Department of Energy, Office of Science (DE-FG02-94ER61937); the U.S. Environmental Protection Agency, EPRI, and other U.S. government agencies and a consortium of 40 industrial and foundation sponsors

    The effect of intermittent shedding on prevalence estimation in populations

    Get PDF
    When studying the epidemiology of an infectious agent such as Salmonella, it is often necessary to estimate infection prevalence. The researcher must measure the amount of infection in those animals, pens, or herds that do or do not have a given exposure experience, e.g. all-in all-out versus continuous ·now. Accurate measurement, or statistical estimation, of the prevalence is important to calculate the relative risk of a management factor. An inaccurate prevalence estimate can be acceptable if it is nondifferential, and if both exposed and nonexposed populations have the same amount of error, unbiased (l ). If the measurement error is unbiased, the study may be weakened but not invalidated. However, if there is differential misclassification among the exposed and non exposed, or if there is a tendency to over or underestimate the prevalence, inappropriate conclusions could be reached

    Speciesistic Veganism: An Anthropocentric Argument

    Get PDF
    The paper proposes an anthropocentric argument for veganism based on a speciesistic premise that most carnists likely affirm: human flourishing should be promoted. I highlight four areas of human suffering promoted by a carnistic diet: (1) health dangers to workers (both physical and psychological), (2) economic dangers to workers, (3) physical dangers to communities around slaughterhouses, and (4) environmental dangers to communities-at-large. Consequently, one could ignore the well-being of non-human animals and nevertheless recognize significant moral failings in the current standard system of meat production

    Spatial Light Modulators for the Manipulation of Individual Atoms

    Full text link
    We propose a novel dipole trapping scheme using spatial light modulators (SLM) for the manipulation of individual atoms. The scheme uses a high numerical aperture microscope to map the intensity distribution of a SLM onto a cloud of cold atoms. The regions of high intensity act as optical dipole force traps. With a SLM fast enough to modify the trapping potential in real time, this technique is well suited for the controlled addressing and manipulation of arbitrarily selected atoms.Comment: 9 pages, 5 figure
    corecore