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We analyze the operation of quantum gates for neutral atoms with qubits that are delocalized in
space, i.e., the computational basis states are defined by the presence of a neutral atom in the ground
state of one out of two trapping potentials. The implementation of single-qubit gates as well as a
controlled phase gate between two qubits is discussed and explicit calculations are presented for
rubidium atoms in optical microtraps. Furthermore, we show how multiqubit highly entangled states
can be created in this scheme.
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2amax and to approach them to the minimum separation
2amin takes a raising time tr. The temporal evolution of

teraction of a laser with a two-level system and, for this
reason, we have added in Fig. 1 dashed lines indicating
Optical lattices [1] and arrays of optical microtraps [2]
are promising candidates for the implementation of quan-
tum information processing with neutral atoms. Many of
the requirements for quantum computation with optical
microtraps have been recently demonstrated in 2D arrays
of �80 traps with �100 atoms per trap [2]. Some remark-
able characteristics of optical microtraps are the possi-
bility to scale, miniaturize, and parallelize the required
atom optics devices. In addition, they offer two funda-
mental advantages over optical lattices: (i) the possibility
of individually addressing single traps due to the large
separation of the microlenses foci, e.g., �125 �m; and
(ii) the independent displacement of rows and columns of
microtraps and, eventually, of single microtraps. Single
atoms in dipole traps [3] and the Mott insulator transition
with one atom per trap in optical lattices [4] have been
reported, and, therefore, the achievement of 1D and 2D
arrays of optical microtraps containing none or one atom
per trap in a deterministic way can be foreseen for the
near future. We will make use of all these features of
optical microtraps to propose a novel implementation for
quantum information processing.

In our scheme, each qubit consists of two traps sepa-
rated by a distance 2a and one single atom. Per definition,
the detection of the atom in the ground state of the left
trap represents j0i and in the right trap j1i, i.e., j0i � j0iL
and j1i � j0iR, where j0iL;R are the vibrational ground
states of the left and right trap, respectively. Throughout
this Letter we will call this implementation the spatially
delocalized qubit (SDQ), since jh0j~rrj0i � h1j~rrj1ij � 2a
with ~rr the position operator. To implement the SDQ we
will assume that we are able to deterministically store
none or one single atom per trap and cool it to the vibra-
tional ground state in 3D.

Single and two-qubit gate operations will be performed
by adiabatically approaching two traps which will be
modeled as follows: The initial separation of the traps is
0031-9007=03=90(14)=147901(4)$20.00 
the distance a is described by the first half of a period of
a cosine. The two wells remain at the minimum separa-
tion for an interaction time ti and, finally, are adiabati-
cally separated to the initial distance. To simplify the
numerical analysis we will assume piecewise harmonic
trapping potentials as in Ref. [5] and, eventually, consider
realistic Gaussian potentials as they are present in the
experiment [2,6].

Single-qubit operations, e.g., a Hadamard gate, are
performed by adiabatically approaching the traps and
allowing tunneling to take place. In order to illustrate
this operation, it is convenient to consider the two lowest
energy eigenstates of the double well potential. These
two states are symmetric and antisymmetric, denoted
by jSi and jAi, respectively, with energies ES;A�a� �
E�a� 	 1

2 �h��a� and � being the splitting frequency. In
terms of these states, our qubit basis reads: j0i � 1��

2
p �jSi �

jAi�, and j1i � 1��
2

p �jSi � jAi�. Let us assume that the atom
is initially in the left trap, i.e, j �t � 0�i � j0i, then it is
straightforward to check that its time evolution will be
given by j �t�i�e�i�Et=�h��cos��t=2�j0i� isin��t=2�j1i
.
Thus, the atomic wave function oscillates in a Rabi-type
fashion between left and right traps at the flopping fre-
quency 1

2��a�. Obviously, for large trap separations states
jSi and jAi become degenerate in energy, i.e.,��a��0 for
a!1, and then the atom does not evolve in time (up to a
trivial phase). Therefore, it is possible to realize single-
qubit operations via tunneling by experimentally control-
ling the ‘‘Rabi frequency’’ through amin, tr, and ti.

These single-qubit operations are illustrated in Fig. 1
through a numerical integration of the 1D Schrödinger
equation in the parameter plane tr versus ti with j0i being
the initial state. Figure 1 shows (a) the population of state
j1i, denoted by �1, and (b) the total ground state popula-
tion of left and right traps, i.e., �0 � �1, after the whole
cycle of approaching and separating the traps. This oscil-
lating population resembles the Rabi flopping in the in-
2003 The American Physical Society 147901-1
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FIG. 2. Two-qubit phase gate operation. (a) Arrangements of
the qubits: (i) in-line, and (ii) side-by-side; (b) Contourplot
of the spatiotemporal variation of the trapping potential for
arrangement (i). The centers of the four traps are white;
dark gray means high potential energy; (c) Fidelity F �
��cos��C � �� � 1
=2. Parameters as in Fig. 1 with at �
106 a0, !x � !y � 2� 105 s�1, and !z � 1:1� 106 s�1.
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FIG. 1. Single qubit operations for #amax � 5, #amin � 1:8,
and the atom initially in the left trap: (a) Population of the right
trap; (b) the sum of the ground state population of left plus
right traps. #�1 �

����������������
�h=m!x

p
is the position spread of the ground

state with m the mass of the neutral atom and !x the trapping
frequency.
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the �
2 ; �;

3�
2 ; 2� laser pulse notation conventionally used

in quantum optics. For small tr, nonadiabaticity results in
the population of excited vibrational states, which, as
shown in Fig. 1(b), yields �0 � �1 < 1. In what follows,
we will focus only in the adiabatic regime.

For the two-qubit gate operations we assume that the
two qubits are arranged either (i) in a 1D configuration,
i.e., the four traps form a line, or (ii) side-by-side in a 2D
configuration, i.e., the traps form a square, cf. Fig. 2(a).
The traps involved are labeled A0, A1 for the first qubit
and B0, B1 for the second, and the respective ground
states are denoted j0iA, j1iA and j0iB, j1iB. A two-qubit
gate will be realized via the collisional interaction
between bosonic neutral atoms [7]. We will consider
87Rb atoms whose collisional interaction can be de-
scribed by a contact potential of the form U�~rr1; ~rr2� �
4�at �h

2m�1�3�~rr1 � ~rr2�, where at � 106 a0 � 5:61 nm
is the s-wave scattering length in the spin triplet.
Because the states j0i and j1i are localized in different
positions, it is enough to perform a suitable spatiotempo-
ral variation of the potentials in order to pick up a colli-
sional phase shift, e.g., only if both atoms are in j1i. This
is sufficient to implement a two-qubit phase gate, which
transforms product states jiiAjjiB, i; j 2 f0; 1g, into
exp�i �i1�j1��jiiAjjiB and, supplemented by arbitrary
single-qubit gates, forms a universal set of gates.
147901-2
For the inline arrangement, the change of the potential
leading to a phase gate is shown in Fig. 2(b), where
horizontal and vertical axes denote space and time, re-
spectively. First, a � pulse is applied on the second qubit,
exchanging j0iB and j1iB. This creates only single-
particle phases which can be included into the definition
of the single-particle states. If the initial state was
j0iAj0iB, then after the � pulse traps A1 and B0 would
contain no atom. For initial states j1iAj0iB or j0iAj1iB, an
atom would be either in A1 or in B0 and as seen before, we
could approach and eventually separate A1 and B0 such
that a n2� pulse is applied with n integer. In this case
initial and final state coincide, except for a single-particle
phase �S which again can be included into the definition
of j1iA or j0iB. If we started from j1iAj1iB, then after the
first pulse A1 and B0 would both be occupied, and during
the n2� pulse the two atoms would collide. For an adia-
batic evolution we can neglect not only the probability to
populate excited vibrational states, but also to find two
atoms in the same trap, since, due to the collisional
interaction, these states are not degenerated with states
where each atom occupies a different trap [5]. Thus for
at � 0 initial and final state are the same except for a
phase � and, in order to realize the desired phase gate
operation, we need its collisional part �C � �� 2�S to
be an odd multiple of �. The fidelity of this operation can
147901-2



FIG. 3. Creation of a maximally entangled two-qubit state
with two 87Rb atoms in a single step: (a) The initial state is
j0iAj1iB, with 2a and 2b being the separation of the traps in the
x and y direction, respectively; (b) we adiabatically and simul-
taneously, i.e., a�t� � b�t�, approach the four traps towards the
center of the square; (c) above: population of j0iAj1iB and
j1iAj0iB; below: population of j0iAj0iB (equal to the population
of j1iAj1iB), double qubit, and double trap occupations. The
parameters are: #amax � 5, #amin � 1:9, !xtr � 80, !xti �
58, at � 106a0, !x � !y � 2� 105 s�1, and !z �
1:1� 106 s�1.
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be expressed as F � ��cos��C � �� � 1
=2, which is
plotted for the adiabatic regime in Fig. 2(c). Here � is
the final probability to find the atom in the same state as it
was before the n2� pulse, neglecting the collisional
phase. To calculate the collisional phase �C, we have
integrated the two-particle 1D Schrödinger equation re-
placing U�~rr1; ~rr2� by an effective 1D interaction potential
under the assumption that no transverse excitations occur
[7]. Finally, to complete the phase gate operation another
� pulse is applied to the second qubit.

In the case of 2D arrays of traps, as they are typically
realized in the experiment [2], the easiest operation is to
move complete columns of microtraps. To realize the gate
it is enough to be able to move selectively some columns,
with the additional benefit that the operation is applied to
many pairs of qubits in parallel which might allow for an
easy implementation of error correcting codes. For the
side-by-side arrangement, the initial and final� pulse can
be omitted and only the 2� pulse between traps A1 and B1
is needed. Although conceptually much easier, the imple-
mentation in this arrangement demands the ability to
move single traps instead of columns, which makes it
experimentally more involved.

The SQD scheme allows also to create a maximally
entangled state in a straightforward way. Let us consider
four traps in the side-by-side arrangement, Fig. 3(a), with
the two atoms located in the upper-left and lower-right
traps, respectively, i.e., the initial two-particle state is
j0iAj1iB. During an approach of the traps, Fig. 3(b), the
general two-particle state of the system will be

j��t�i �
X

i;j�0;1

cijjiAijjBi �
X

#�A;B

c#j0#ij1#i

�
X

i�0;1

X

#�A;B

ci#ji#iji#i: (1)

Thus, the state of the system includes the four states of
the computational basis, but also double qubit occupation,
defined as �dq �

P
#�A;B c#c

�
#, and double trap occupa-

tion, �dt �
P
i�0;1

P
#�A;B ci#c

�
i#. In order to create max-

imally entangled states, the approach of the traps must be
both adiabatic and symmetric, i.e., a�t� � b�t�. Again,
adiabaticity means that the population of excited vibra-
tional states, as well as of double trap occupation states,
can be neglected, cf. Fig. 3(c). A symmetric approach
results in �00�t� � �11�t� � � dq�t�=2 during the whole
process. In particular, these populations oscillate at the
same frequency and, at the oscillation nodes, the state of
the system is a combination only of j0iAj1iB and j1iAj0iB.
Therefore, choosing appropriate parameter values, such
as those of Fig. 3, it is possible to obtain a maximally
entangled state at the end of the process. Clearly, it is
straightforward to generalize this approach to more than
two qubits and, consequently, to prepare multiparticle
entangled states in one single step.

Although we have assumed harmonic trapping poten-
tials so far, the experimental situation is described
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by Gaussian potentials of the form V�x� �
�V0 exp���1=2�m!2

xx2=V0
. An analysis of the energy
eigenvalues and eigenstates of the superposition of two
such potentials as a function of the trap separation shows
that the cosine function previously used to adiabatically
approach the traps leads to values of tr larger by more
than 2 orders of magnitude compared to harmonic traps.
We have therefore applied the techniques from [8] to
optimize the temporal variation of the trap separation
while suppressing the population of excited vibrational
states. For V0 � 200 �h!x, Fig. 4(a) shows the result of this
optimization for single-qubit operations, where the opti-
mization is done with respect to the symmetric ground
and first excited states. We notice that for the minimal
distance 2amin the two traps are no longer separated by a
tunneling barrier, but they form a single flat trap.
Figure 4(b) shows the population of the right trap, �1.
The error rate due to the excitation of other vibrational
states can be made smaller than 1% for wxtr > 1100,
which is a reduction by 1 order of magnitude compared
to the nonoptimized a�t�. Further errors could be caused
by shaking of the trap positions, the frequency of which
in current experiments is 2 or more orders of magnitude
below the trapping frequencies, and by intensity fluctua-
tions of the trapping lasers changing the trap depth. In
both cases we have found error rates & 1% for amplitudes
of a few percent of amin and V0, respectively.

Typical trapping frequencies for state-of-the-art 2D
optical microtraps arrays of 87Rb atoms are 105–106 s�1

in the transverse directions and 104–105 s�1 along
the laser beam direction [2,6]. In order not to populate
excited vibrational states and neglect double trap
147901-3
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FIG. 4. Single-qubit gates for Gaussian trapping potentials
for the following parameters: !x � 6� 105 s�1, #�1 �
35:4 nm, V0 � 200 �h!x � 0:9 mK�kB, #amax � 70, #amin �
14:35: (a) The optimized variation of the distance for approach-
ing the traps, insets show the form of the potential; (b)
Population �1 of the right trap showing Rabi-type oscillations.
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occupation, the trap displacement has to be adiabatic with
respect to the lowest relevant trapping frequency. This
adiabaticity condition yields realization times for single
and two-qubit operations on the order of 10 ms, respec-
tively. This value should be compared with the typical
lifetime of the atoms in the microtraps of �1 s, and the
rate of spontaneous scattering of photons from the trap-
ping laser of 1–10 s�1 [9]. Sideband cooling to a temper-
ature T & 1�K with a ground state population of 98:4%
has been achieved in optical lattices with parameters very
similar to the ones used here [10], and heating rates below
1�K=s, corresponding to 1=80 and 1=16 vibrational
quanta per second in the directions of strong and weak
trapping, respectively, have been estimated [11].
Summing up effects of fluctuations of the trap positions,
photon scattering, and heating, we can estimate an overall
error rate r � 0:02 for a single-qubit operation with
!xtr � 1200, corresponding to a total gate time of 4 ms.

These error rates show that the SDQ configuration with
neutral atoms in optical microtraps does not outperform
the proposals making use of internal states [7,12] or
vibrational states [5,13] taking into account realistic ex-
perimental imperfections. But it offers some important
practical advantages, which especially lie in the relative
simplicity and closeness to experimental implementation:
(i) Spontaneous emission leads to decoherence only in a
much reduced fashion. As long as the microtraps are
moved adiabatically, atoms remain in the internal and
external ground state for typical gate times. (ii) There is
no momentum transfer in single or two-qubit operations
147901-4
as, in general, it is the case when these operations are
realized via laser pulses. This momentum transfer could
heat the atoms and, eventually, take them out of the
microtrap. (iii) There is no need of state dependent inter-
action to realize the two-qubit operations. In the SDQ
configuration one has that jh0j~rrj0i � h1j~rrj1ij � 0 and,
therefore, we can make use of the fact that all interactions
are space dependent to realize the gate. (iv) The measure-
ment of the state of the system is straightforward. Optical
microtraps can be separated to distances well beyond
�10 �m, allowing to detect the population by focusing
a laser field in one single trap and detecting the fluores-
cence signal [2]. Finally, (v) single and two-qubit gates
are realized by the same kind of operation, i.e., by ap-
proaching the microtraps, which implies a strong simpli-
fication in the experimental setup.

We note that most of the concepts developed in this
Letter can be also applied to quantum dots with the qubit
encoded in two tunnel-split ground states and the
Coulomb interaction used to realize the qubit operations
[14]; and to Josephson junctions based on the charge
degree of freedom with the Cooper pairs tunneling co-
herently through the superconducting junction [15].
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