20 research outputs found

    Reciprocal Interactions between Nematodes and Their Microbial Environments

    Get PDF
    Parasitic nematode infections are widespread in nature, affecting humans as well as wild, companion, and livestock animals. Most parasitic nematodes inhabit the intestines of their hosts living in close contact with the intestinal microbiota. Many species also have tissue migratory life stages in the absence of severe systemic inflammation of the host. Despite the close coexistence of helminths with numerous microbes, little is known concerning these interactions. While the environmental niche is considerably different, the free-living nematode Caenorhabditis elegans (C. elegans) is also found amongst a diverse microbiota, albeit on decaying organic matter. As a very well characterized model organism that has been intensively studied for several decades, C. elegans interactions with bacteria are much more deeply understood than those of their parasitic counterparts. The enormous breadth of understanding achieved by the C. elegans research community continues to inform many aspects of nematode parasitology. Here, we summarize what is known regarding parasitic nematode-bacterial interactions while comparing and contrasting this with information from work in C. elegans. This review highlights findings concerning responses to bacterial stimuli, antimicrobial peptides, and the reciprocal influences between nematodes and their environmental bacteria. Furthermore, the microbiota of nematodes as well as alterations in the intestinal microbiota of mammalian hosts by helminth infections are discussed

    Trilateral Relationship: Ascaris, Microbiota, and Host Cells

    Get PDF
    Ascariasis is a globally spread intestinal nematode infection of humans and a considerable concern in pig husbandry. Ascaris accomplishes a complex body migration from the intestine via the liver and lung before returning to the intestine. Tissue migration and the habitat shared with a complex microbial community pose the question of how the nematode interacts with microbes and host cells from various tissues. This review addresses the current knowledge of the trilateral relationship between Ascaris, its microbial environment, and host cells, and discusses novel approaches targeting these interactions to combat this widespread infection of livestock and man

    Different Outcomes of Experimental Hepatitis E Virus Infection in Diverse Mouse Strains, Wistar Rats, and Rabbits

    Get PDF
    Hepatitis E virus (HEV) is the causative agent of acute hepatitis E in humans in developing countries, but autochthonous cases of zoonotic genotype 3 (HEV-3) infection also occur in industrialized countries. In contrast to swine, rats, and rabbits, natural HEV infections in mice have not yet been demonstrated. The pig represents a well-established large animal model for HEV-3 infection, but a suitable small animal model mimicking natural HEV-3 infection is currently missing. Therefore, we experimentally inoculated C57BL/6 mice (wild-type, IFNAR−/−, CD4−/−, CD8−/−) and BALB/c nude (nu/nu) mice, Wistar rats, and European rabbits with a wild boar-derived HEV-3 strain and monitored virus replication and shedding, as well as humoral immune responses. HEV RNA and anti-HEV antibodies were detected in one and two out of eight of the rats and all rabbits inoculated, respectively, but not in any of the mouse strains tested. Remarkably, immunosuppressive dexamethasone treatment of rats did not enhance their susceptibility to HEV infection. In rabbits, immunization with recombinant HEV-3 and ratHEV capsid proteins induced protection against HEV-3 challenge. In conclusion, the rabbit model for HEV-3 infection may serve as a suitable alternative to the non-human primate and swine models, and as an appropriate basis for vaccine evaluation studies

    The Intestinal Roundworm Ascaris suum Releases Antimicrobial Factors Which Interfere With Bacterial Growth and Biofilm Formation

    Get PDF
    Ascariasis is a widespread soil-transmitted helminth infection caused by the intestinal roundworm Ascaris lumbricoides in humans, and the closely related Ascaris suum in pigs. Progress has been made in understanding interactions between helminths and host immune cells, but less is known concerning the interactions of parasitic nematodes and the host microbiota. As the host microbiota represents the direct environment for intestinal helminths and thus a considerable challenge, we studied nematode products, including excretory-secretory products (ESP) and body fluid (BF), of A. suum to determine their antimicrobial activities. Antimicrobial activities against gram-positive and gram-negative bacterial strains were assessed by the radial diffusion assay, while effects on biofilm formation were assessed using the crystal violet static biofilm and macrocolony assays. In addition, bacterial neutralizing activity was studied by an agglutination assay. ESP from different A. suum life stages (in vitro-hatched L3, lung-stage L3, L4, and adult) as well as BF from adult males were analyzed by mass spectrometry. Several proteins and peptides with known and predicted roles in nematode immune defense were detected in ESP and BF samples, including members of A. suum antibacterial factors (ASABF) and cecropin antimicrobial peptide families, glycosyl hydrolase enzymes such as lysozyme, as well as c-type lectin domain-containing proteins. Native, unconcentrated nematode products from intestine-dwelling L4-stage larvae and adults displayed broad-spectrum antibacterial activity. Additionally, adult A. suum ESP interfered with biofilm formation by Escherichia coli, and caused bacterial agglutination. These results indicate that A. suum uses a variety of factors with broad-spectrum antibacterial activity to affirm itself within its microbe-rich environment in the gut

    Infection with soil-transmitted helminths and their impact on coinfections

    Get PDF
    The most important soil-transmitted helminths (STHs) affecting humans are roundworms, whipworms, and hookworms, with a large proportion of the world’s population infected with one or more of these intestinal parasites. On top of that, concurrent infections with several viruses, bacteria, protozoa, and other helminths such as trematodes are common in STH-endemic areas. STHs are potent immunomodulators, but knowledge about the effects of STH infection on the direction and extent of coinfections with other pathogens and vice versa is incomplete. By focusing on Kenya, a country where STH infections in humans are widespread, we provide an exemplary overview of the current prevalence of STH and co-occurring infections (e.g. with Human Immunodeficiency Virus, Plasmodium falciparum, Giardia duodenalis and Schistosoma mansoni). Using human data and complemented by experimental studies, we outline the immunomechanistic interactions of coinfections in both acutely STH transmigrated and chronically infected tissues, also highlighting their systemic nature. Depending on the coinfecting pathogen and immunological readout, STH infection may restrain, support, or even override the immune response to another pathogen. Furthermore, the timing of the particular infection and host susceptibility are decisive for the immunopathological consequences. Some examples demonstrated positive outcomes of STH coinfections, where the systemic effects of these helminths mitigate the damage caused by other pathogens. Nevertheless, the data available to date are rather unbalanced, as only a few studies have considered the effects of coinfection on the worm’s life cycle and associated host immunity. These interactions are complex and depend largely on the context and biology of the coinfection, which can act in either direction, both to the benefit and detriment of the infected host

    Hepatitis E virus: Efficacy of pasteurization of plasma‐derived VWF/FVIII concentrate determined by pig bioassay

    Get PDF
    Background Hepatitis E virus (HEV) is the leading cause of acute hepatitis throughout the world. Increasing blood component transfusion-associated HEV infections highlight the need for reliable virus inactivation procedures for plasma derivatives from pooled plasma donations. Study Design and Methods An animal infection study was conducted to evaluate the efficiency of HEV inactivation by pasteurization during the manufacturing process of the von Willebrand Factor/Factor VIII (VWF/FVIII) concentrate Haemate P/Humate-P (CSL Behring, Marburg, Germany). For this purpose, groups of pigs were inoculated with stabilized VWF/FVIII intermediate spiked with HEV-positive liver homogenate and exposed to increasing incubation times of 0, 3, 6, and 10 h at 60 degrees C. Animals were evaluated for virus replication over 27 days and in a subsequent trial over 92 days. Results Virus replication was detected in animals up to the 6-h pasteurization group. In contrast, pasteurization for 10 h did not reveal virus detection when the observation period was 27 days. In an additional experiment using the 10-h pasteurized material, two individuals started virus excretion and seroconverted when the observation period was extended to 92 days. Based on the total infection rate (2 of 12) of the animals inoculated with the sample pasteurized for 10 h, a virus reduction factor of at least 4.7 log(10) is calculated. Conclusion This study demonstrates that pasteurization at 60 degrees C for 10 h of an HEV-positive plasma derivative leads to the effective reduction of infectivity, resulting in a VWF/FVIII product with an appropriate margin of safety for HEV

    Early Immune Initiation by Porcine Cells following Toxoplasma gondii Infection versus TLR Ligation

    No full text
    Containment of acute Toxoplasma gondii infection is dependent on an efficient interferon gamma response. However, the earliest steps of immune response initiation immediately following exposure to the parasite have not been previously characterized in pigs. Murine and human myeloid cells produce large quantities of interleukin (IL)-12 during early T. gondii infection. We therefore examined IL-12 expression by porcine peripheral blood monocytes and dendritic cell (DC) subsets following toll-like receptor (TLR) ligation and controlled T. gondii tachyzoite infection. We detected IL-12p40 expression by porcine plasmacytoid DC, but not conventional or monocyte-derived DC following TLR ligation. Unexpectedly, we also observed considerable IL-12p40 production by porcine CD3– NKp46+ cells—a classical natural killer cell phenotype—following TLR ligation. However, in response to T. gondii exposure, no IL-12 production was observed by either DC or CD3– NKp46+ cells. Despite this, IL-18 production by DC-enriched peripheral blood mononuclear cells was detected following live T. gondii tachyzoite exposure. Only combined stimulation of porcine peripheral blood mononuclear cells with recombinant IL-12p70 and IL-18 induced innate interferon gamma production by natural killer cells, while T cells and myeloid cells did not respond. Therefore, porcine CD3– NKp46+ cells serve as important IL-12 producers following TLR ligation, while IL-18 likely plays a prominent role in early immune response initiation in the pig following T. gondii infection

    Early Immune Initiation by Porcine Cells following Toxoplasma gondii Infection versus TLR Ligation

    No full text
    Containment of acute Toxoplasma gondii infection is dependent on an efficient interferon gamma response. However, the earliest steps of immune response initiation immediately following exposure to the parasite have not been previously characterized in pigs. Murine and human myeloid cells produce large quantities of interleukin (IL)-12 during early T. gondii infection. We therefore examined IL-12 expression by porcine peripheral blood monocytes and dendritic cell (DC) subsets following toll-like receptor (TLR) ligation and controlled T. gondii tachyzoite infection. We detected IL-12p40 expression by porcine plasmacytoid DC, but not conventional or monocyte-derived DC following TLR ligation. Unexpectedly, we also observed considerable IL-12p40 production by porcine CD3– NKp46+ cells—a classical natural killer cell phenotype—following TLR ligation. However, in response to T. gondii exposure, no IL-12 production was observed by either DC or CD3– NKp46+ cells. Despite this, IL-18 production by DC-enriched peripheral blood mononuclear cells was detected following live T. gondii tachyzoite exposure. Only combined stimulation of porcine peripheral blood mononuclear cells with recombinant IL-12p70 and IL-18 induced innate interferon gamma production by natural killer cells, while T cells and myeloid cells did not respond. Therefore, porcine CD3– NKp46+ cells serve as important IL-12 producers following TLR ligation, while IL-18 likely plays a prominent role in early immune response initiation in the pig following T. gondii infection

    Hepatitis E Virus Genotype 3 Diversity: Phylogenetic Analysis and Presence of Subtype 3b in Wild Boar in Europe

    No full text
    An increasing number of indigenous cases of hepatitis E caused by genotype 3 viruses (HEV-3) have been diagnosed all around the word, particularly in industrialized countries. Hepatitis E is a zoonotic disease and accumulating evidence indicates that domestic pigs and wild boars are the main reservoirs of HEV-3. A detailed analysis of HEV-3 subtypes could help to determine the interplay of human activity, the role of animals as reservoirs and cross species transmission. Although complete genome sequences are most appropriate for HEV subtype determination, in most cases only partial genomic sequences are available. We therefore carried out a subtype classification analysis, which uses regions from all three open reading frames of the genome. Using this approach, more than 1000 published HEV-3 isolates were subtyped. Newly recovered HEV partial sequences from hunted German wild boars were also included in this study. These sequences were assigned to genotype 3 and clustered within subtype 3a, 3i and, unexpectedly, one of them within the subtype 3b, a first non-human report of this subtype in Europe
    corecore