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Highlights
Recent studies are uncovering a com-
plex interplay between gastrointestinal
helminths, gut microbes, and the im-
mune system.

Parasitic helminth infections are associ-
ated with alterations to the intestinal
microbiome and metabolome, and
these interactions are thought to influ-
ence host susceptibility to infections
Ascariasis is a globally spread intestinal nematode infection of humans and a
considerable concern in pig husbandry. Ascaris accomplishes a complex body
migration from the intestine via the liver and lung before returning to the intestine.
Tissue migration and the habitat shared with a complex microbial community
pose the question of how the nematode interacts with microbes and host cells
from various tissues. This review addresses the current knowledge of the trilateral
relationship between Ascaris, its microbial environment, and host cells, and dis-
cusses novel approaches targeting these interactions to combat this widespread
infection of livestock and man.
with nematodes and bacterial pathogens.

Technological advancesmake it possible
to probe these interactions in consider-
able depth, and the large roundworm
Ascaris presents a particularly interesting
opportunity: Ascaris infections in pigs
essentially mirror the human disease,
and the pig is being rapidly developed
as a human-relevant model for infectious
diseases.
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Relevance of Ascaris–Microbiota–Host Cell Interactions
Ascariasis is one of the most common human parasitic infections worldwide and a neglected
tropical diseasei. In developing countries the prevalence of soil-transmitted helminths often
exceeds 10% – a large percentage of which is caused by the large roundworm Ascaris
lumbricoides [1]. Worldwide, Ascaris infections cause approximately 60 000 deaths per year,
mainly in childrenii, who also experience malnutrition and developmental deficits from chronic
infections [2–4]. Pathogen control is complicated by several factors, such as robust eggs
surviving for several years in humid soil [5], frequent reinfection despite mass treatment with
anthelmintic drugs [6], an overdispersion (see Glossary) among hosts [7], and the lack of
vaccines applicable to humans as well as pigs. Furthermore, Ascaris infection compromises
control of other infectious agents, including Mycobacterium tuberculosis, Plasmodium spp.,
and HIV [8] as well as responses to non-parasite antigens, thus hampering vaccination efficacy
against other pathogens [9]. Concurrently, the infestation rate of Ascaris suum in pig farms was
estimated to reach 30–70% across Europe [10–13]. Similar to humans, adult pigs slowly develop
protective immunity against Ascaris following recurrent exposure. However, contact with
contaminated soils in organic pig farming makes it almost impossible to disrupt the infection
chain. Consequently, Ascaris infection leads to significant economic losses due to a reduced
feed conversion ratio and liver condemnations at slaughter [14]. As in humans, A. suum infection
negatively affects the vaccination responses to other pathogens of pigs [15].

Ascaris spends most of its lifespan in the gut surrounded by microbes. Metazoans are subject to
infectious threats by microbes; thus, on the one hand, microbes in the host gut may present
infectious or toxic challenges for the enteric parasite Ascaris. For example, the pore-forming
crystal protein Cry5B, derived from Bacillus thuringiensis, exhibits considerable anthelmintic
activity, killing Ascaris in vitro and in vivo [16]. Interestingly, saprotrophic fungal strains, such as
Aspergillus fumigatus, can inhibit larval development and viability of A. suum eggs [17]. Though
these are soil-dwelling organisms, their nematicidal activity exemplifies direct microbial threats
to Ascaris which may also be posed by intestinal microbes. On the other hand, microbes may
also be beneficial for worms, as has been demonstrated for the free-living nematodeCaenorhabditis
elegans: microbial components may provide key nutrients [18], protect nematodes against infection
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Key Figure

Potential Interactions of Parasite, Gut Microbes, and Immune Cells in Ascaris Infection
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Glossary
Antimicrobial peptides (AMPs):
broad-spectrum antimicrobial
substances produced by organisms
across the tree of life.
Excretory–secretory (E/S) products:
a mixture of proteins and low-molecular-
weight molecules released by parasitic
worms.
Gut–lung axis: crosstalk between
intestinal microbiota and lung immunity;
it can be mediated by intestinal
metabolites.
Loeffler syndrome: a transient
inflammatory respiratory disease
characterized by pulmonary
eosinophilia.
Macrobiota: non-microscopic
members of the intestinal biota.
Microbiome: the geneticmaterial of the
microbial communities in a particular
environment.
Microbiota: the community of
microbes in a particular environment.
Overdispersion: high interindividual
variation in parasite burden.
Quiescent: low immune activation.
Regulatory T cells (Tregs): T cells
which suppress other immune cells.
Tolerance: unresponsiveness of
immune cells to substances which can
usually stimulate immune responses.
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[19], promote fecundity to compensate for antibacterial stress responses [20], and modulate host
immune cells as shown in Heligmosomoides polygyrus-infected mice [21]. Ascaris has been
shown to lead to alterations in the host microbiome and metabolic potential [22], in part via the
release of antimicrobial factors [23]. In parallel, Ascaris is constantly exposed to, and attacked by,
host immune and non-immune cells of different organs, depending on the localization of the life
stages. It first encounters epithelial cells, followed by the cellular defense machinery of liver and
lung, to finally re-encounter the cellular mucosal response of the small intestine upon completion
of body migration [24]. Here we discuss the multilateral relationship (Figure 1, Key Figure) based
on data from the natural hosts, as well as murine models which allow the infection to be studied
up to the lung stage. This review thereby addresses the following key questions. (i) What is the
role of themicrobiota during larval invasion and bodymigration, as opposed to survival, maturation,
and reproduction in the intestine? (ii) How does the microbial environment regulate the antiparasite
immune response? (iii) What are the mechanisms and molecules exploited by Ascaris to modulate
the microbial environment? This review focuses on interactions with intestinal organisms; readers
are referred to a review by Salgame et al. for a discussion regarding interactions between helminths
and extraintestinal pathogens [8].

First Encounter of Ascaris Larvae and Host Cells in a Diverse Microbial
Environment
Infection begins with ingestion of eggs containing third-stage larvae which hatch within 3 h of
intake. It takes the L3 larvae about 6 h to reach cecal and colonic sites where the invasion process
into the mucosal tissue is initiated. The rapid mucosal penetration argues against a competition
for nutrients between microbes and newly invading parasites [24]. Interestingly, for Trichuris
muris infection in mice, signals derived from gut microbes have been shown to play a dual role.
While gut microbes are needed for optimal hatching of T. muris larvae from ingested eggs [25],
a recent study reported that structural changes of the cecal microbiome during infection sup-
press subsequent parasite egg hatching, protecting the host from overcrowding [26]. Another
study addressing interactions between the two closely related species T. muris and Trichuris
suis of mice and pigs, respectively, and a variety of Gram-positive as well as Escherichia coli
strains demonstratedmarked differences in bacterial-induced hatching between the two parasite
species [27]. Hence, microbial-derived stimuli common in the definitive host, but lacking or under-
represented in off-target species, seem to contribute to host specificity. Whether a similar
mechanism supports Ascaris infections in humans and pigs while reducing infectivity or parasite
survival in other species remains to be determined.

Epithelial cells are the first host cells encountered by invading Ascaris larvae. Studying a microbe-
free system, we have recently shown that the initial interaction of A. suum L3 with porcine small-
Figure 1. The Ascaris life cycle affects three organs of both the definitive host and experimental mouse model. (A) In the definitive human and porcine host, the third larval
stage hatches from ingested eggs in the small intestine and migrates to the cecum and upper colon where L3 invades the tissue. After passing through liver, lung, and
airways, the fourth larval stage is swallowed and completes development into the adult stage in the small intestine. (B) The mouse model lacks the small intestinal L4
and adult stage but permits study of the liver and lung stages of the infection. (C) Immune cells are likely exposed to microbe-derived signals or translocated bacteria
during the L3 invasion process, resulting in the instruction of heterogeneous T cell responses and antibody production in gut-associated lymphoid tissue. At later
stages of infection, L4 and mature worms release antimicrobial factors which likely act in concert with type 2 cytokine-dependent physiological changes, resulting in
structural changes of the gut microbiota. Microbial metabolites and Ascaris-derived immunomodulators may synergize in supporting regulatory cell populations such as
regulatory T cells (Tregs) or regulatory macrophages (Mregs) and thereby repress antiparasite responses locally. Active compounds, as well as regulatory cells, may
also be distributed via the circulation and act systemically. (D) In the liver, larval tissue invasion is encompassed by the development of inflammatory lesions. Experimental
studies in mice lacking the intestinal L4 and adult stages suggest that hepatic protective immunity relates to the extent of liver inflammation. It is hence conceivable that
circulating microbial metabolites, as well as products released by adult worms, promote tolerogenic responses and restrain protective effector/memory responses in
the definitive host. (E) In the lung, considerable damage and immune cell infiltration is caused by the L4 breaching into the alveolar space. Recurrent exposure to Ascaris
infection can result in the development of T helper (Th)2- and Th17-driven allergic responses to Ascaris-derived and environmental allergens. Regulatory circuits promoted
by parasite products and gut-derived microbial metabolites may prevent such adverse reactions.
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intestinal epithelial cells in vitro does not induce the typical signaling pathways associated with
pathogen recognition, cell activation, and the initiation of immune responses, such as mitogen-
activated protein kinase (MAPK) or NF-κB signaling [28]. This quiescent state of epithelial cells
was also evident in the suppressed expression of immune cell attractants, as the expression of
several chemokines fell below baseline levels upon larval encounter [28]. On the parasite side,
dual-species RNA-sequencing (RNA-Seq) revealed the upregulation of factors potentially
involved in invasion, migration, feeding, and growth of A. suum L3 [28]. Interestingly, proteomic
analysis of excretory–secretory (ES) products of different Ascaris life stages showed that
antimicrobial factors abundantly produced by the gut-dwelling L4 and adult stages are scarce
in the products of the infective L3 stage commencing tissue migration [23,29]. We speculate
that the infective stage quickly escapes from the potentially harmful environment posed by gut
microbes and the high density of mucosal immune cells, whereas the L4 stage and adult
worms permanently exposed to microbes actively modulate their microbial surrounding. Of
note, it remains to be determined to what extent the quiescent state of host epithelial cells as
well as the Ascaris gene expression and excretory profile may be altered in the presence of
microbes during initial contact.

Tissue Migratory Phase
Subsequent to epithelial invasion, L3 larvae leave the intestinal tract via the portal blood stream
and reach the vasculature of the liver. Migration continues via the liver sinusoids and through
the hepatic parenchyma, typically in the absence of clinical signs [30]. For a better understanding
of the requirements of larval migration and the immunological profile of Ascaris infection it is of
great interest to investigate whether tissue migration leads to translocation of bacteria over
breached barriers in the gut, and, shortly after, in the lung mucosa. It is conceivable that immune
and endothelial cells in the gut, portal system, liver, or lung are not only exposed to parasite prod-
ucts, but also to bacterial components or live microbes during larval migration. While the majority
of larval ascariasis cases are thought to be subclinical, without apparent bacterial-induced sys-
temic inflammation [31], systemic spread of intestinal microbial components might pose a risk
factor for sepsis as shown in various mouse models, summarized by Hübner and colleagues
[32]. Furthermore, microbial pathogen-associated molecular patterns (PAMPs), such as lipopoly-
saccharide (LPS) or peptidoglycan, may be involved in the instruction of mixed T-helper (Th) 1/
Th2 responses typically seen in the liver of A. suum-infected pigs and mice [33]. Of note,
A. suum-derived molecules, including factors from pseudocoelomic fluid and the metabolites
succinate and butyrate, were shown to modulate host dendritic cells (DCs) towards a regulatory
phenotype [32,34]. In light of this finding, it is conceivable that Ascaris, like other helminths,
evolved counter-regulatory mechanisms which prevent overt inflammatory responses resulting
from bacterial translocation and tissue destruction during larval migration. However, the mostly
subclinical course of the larval phase of infection suggests that host immune defense against bac-
terial infection remains largely intact.

As the liver is an organ preferentially inducing tolerance, the parasite might benefit from
invading the liver [30]. However, larval trapping in the liver, especially during secondary Ascaris
infection, is a common feature during hepatic migration [30]. Migrating larvae induce an inflam-
matory area which is visible macroscopically as white spots [31]. These are typically composed
of leukocyte infiltrates dominated by eosinophils and neutrophils at early stages of formation,
whereas macrophages, but also T and B cells, infiltrate the area at later stages of the response
(Figure 1). These inflammatory lesions are associated with tissue repair and developing
immunity to A. suum in pigs [31]. Still, pigs raised on contaminated pastures are continuously
exposed to incoming L3, resulting in sustained liver inflammation and liver condemnation at
slaughter [31].
254 Trends in Parasitology, March 2021, Vol. 37, No. 3
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Around 6 to 8 days postinfection, Ascaris reaches the lung via the blood stream. The larvae, now
exceeding the diameter of the capillary bed, break into the alveolar space before being carried up
the bronchial tree and coughed up to the oral cavity. Acute pulmonary ascariasis triggers
considerable inflammationmarked by eosinophil infiltration, a symptom complex termed Loeffler
syndrome in human patients. Respiratory distress is evident in coughing and dyspnea. During
primary infection the phase of hepato-tracheal migration is marked by the rise of innate responses
including blood eosinophilia, group 2 innate lymphoid cell (ILC2) activation, Ym-1 induction in
peritoneal macrophages, and eosinophil infiltration of the lung [35]. To date, surprisingly little
information is available on the kinetics/phenotype of innate and adaptive responses during
the tissue-migratory phase. Interestingly, a study comparing single-exposure with multiple-
exposures found a significant reduction in worm burden in the lung, considerable pulmonary
inflammation, and impaired pulmonary function in concert with elevated systemic Th2 and
Th17 cytokines in mice repeatedly infected with A. suum [36]. This finding is in accordance with
the demonstration of airway hyperresponsiveness and pulmonary damage provoked by Ascaris
infection in mice [37] and the association between Ascaris exposure and the development of
allergies/asthma demonstrated in several clinical trials with human patients [38].

In addition, studies in mice showed that Ascaris infection may enhance susceptibility to bacterial
pathogens. Lung-stage Ascaris-infected mice exposed to aerosols of the lung-colonizing bacte-
rium Pasteurella multocida experienced severe pneumonia and sepsis resulting in high mortality
[32]. Pigs coinfected with lung-stage Ascaris and E. coli developed more severe lung pathology
and bacterial translocation to lung and liver tissues [39]. Clearly, the effects of inflammatory
responses to migrating Ascaris larvae on microbial communities of the respiratory tract and the
consequences for the control of other pulmonary infections as well as respiratory health merit
further investigations.

Gut–Lung Axis and Survival of Ascaris in the Intestine
Emerging evidence reveals an important crosstalk between the intestinal microbiota and the
lungs, termed the gut–lung axis [40]. Changes in the composition of the gut microbiome,
through either diet, antibiotic treatment, or nematode infections are linked with altered immune
responses and homeostasis in the respiratory tract [40–43]. Analysis of colon contents from
pigs experimentally infected with A. suum revealed increased total short-chain fatty acid (SCFA)
concentrations with significant increases in propionate and butyrate and a trend toward
increased acetate concentrations [44]. Interestingly, helminth-associated increases in SCFAs
attenuated allergic airway inflammation in H. polygyrus-infected mice (Table 1) [44]. In an
asthmatic human population, members of the gut microbiota were associated with fixed airflow
obstruction and lower specific IgE response to Ascaris [45]. Furthermore, an experimental
study in H. polygyrus-infected mice demonstrated that a strictly enteric helminth infection can
have remote protective antiviral effects in the lung through induction of a microbiota-dependent
type I interferon response [46]. Thus, the consequences of Ascaris migrating through the lung
and dwelling in the gut impacts airway inflammatory processes through the gut–lung axis.

Ascaris infection modifies the host gut microbiota, with one study suggesting an increase in alpha
diversity at 14 days post infection (dpi) [47] while another study reported a worm-burden-inde-
pendent decrease in diversity indices in chronically infected pigs at 54 dpi [22]. In both instances,
microbial compositional changes were more pronounced in the proximal colon compared with
the feces, suggesting localized effects of A. suum infection on the host microbiota. Chronic infec-
tion was associated with SCFA (acetate and proprionate) production potential and levels as well
as impaired microbial digestion of carbohydrates, suggesting a favorable metabolic environment
for Ascaris with an upregulation of numerous glycosyl hydrolases, ultimately for glucose uptake
Trends in Parasitology, March 2021, Vol. 37, No. 3 255



Table 1. Demonstrated and Predicted Ascaris–Microbiota–Host Cell Interactions

Interaction (experimental system) Directiona Outcomes Refs

Ascaris-derived antimicrobial peptides and proteins
(ASABFs, cecropins, lectins, lysozymes)
(Ascaris suum)

A➔M
A➔H

Microbial killing, microbial neutralization, immunomodulation [23,75,76]

Ascaris-derived metabolites (e.g., SCFA, succinate)
(A. suum)

A➔H, A➔M Promotion of regulatory immune phenotype, altered
microbiome and metabolic environment, influence bacterial
motility, growth, and gene expression

[32,34,83,86–89]

Egg-hatching
(Trichuris muris, Trichuris suis)

M➔A Promotion or prevention of egg hatching and infection [25–27]

Microbiota-derived anthelmintic activity/infection of
nematode by microbe
(A. suum)

M➔A Hampered larval development, nematode killing [16,17]

Microbiota-mediated defense of nematodes, promotion
of nematode viability
(Caenorhabditis elegans, Heligmosomoides polygyrus)

M➔A Providing nutrients, protecting nematode against microbial
infection

[18–21]

Bacterial translocation during nematode tissue migration
(A. suum)

A➔M➔H Increased risk of microbial infection;
compromised anthelmintic immune response

[32,36,39]

Gut–lung axis
(H. polygyrus, T. suis)

A/M➔H➔M Nematode infection alters intestinal microbiome and
metabolome, which modulates respiratory immune responses

[40–43]

Host immunomodulation by Ascaris
(A. suum)

A➔H➔M Compromised immune responses against microbes and
nematode, altered microbiome and intestinal metabolome

[8,9,15]

Host immunomodulation by microbes
(H. polygyrus, Nippostrongylus brasiliensis)

M➔H➔A Compromised immune responses against Ascaris [60–62]

aInteractions: A, Ascaris; M, microbiota; H, host cells;➔ indicates sequence and directionality of interactions (e.g., M➔H➔A: microbiota impact host cells which then
impact Ascaris).
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[22]. Interestingly, H. polygyrus-infected mice also show altered intestinal microbial communities
associated with increased SCFA production leading to protection against allergic asthma as a
clear example of host immunomodulation via the gut–lung axis [44].

In addition, the intestine of adult ascarids contains bacteria [48,49], suggesting that Ascaris
harbors its own intestinal microbial community. Notably, the studies published to date used
culture-based methods, and the A. suummicrobiota andmacrobiota have not yet been charac-
terized using modern methods. Interestingly, A. lumbricoides, isolated from cholera patients, was
also colonized by Vibrio cholerae [50], suggesting that the nematode intestine could serve as a
survival niche for microbial pathogens. A. suum can also carry non-bacterial pathogens such
as the porcine epidemic diarrhea virus (PEDV) [51]. In other intestinal nematode infections,
acquired host-intestinal microbes, in particular Bacteroides thetaiotaomicron, have been
shown to promote nematode fitness and development in T. muris [26]. It follows that Ascaris,
too, hosts microbes beneficial for its survival in the host intestine.

Regulation of Immune Responses to Ascaris by Gut Microbes
Gut microbes and intestinal worms are controlled by opposing innate and adaptive immune
responses orchestrated by Th1/Th17 and Th2 cells, respectively. Humans, pigs, and mice
infected with A. lumbricoides or A. suum display biased Th2 responses, and the magnitude of
Th2 and associated IgE responses in infected human patients is predictive of resistance against
challenge infections [52–56]. Th2 responses are optimally induced in the absence of signals
favoring Th1 and Th17 differentiation [57–59], and coinfections with Th1-associated pathogens
can support nematode survival by suppressing or even blocking the development of Th2
responses [60–62]. It is hence not unlikely that Ascarismay benefit from the deviation of immune
responses when the human or porcine host is confronted with several pathogens simultaneously
256 Trends in Parasitology, March 2021, Vol. 37, No. 3
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(Box 1). Furthermore, microbial signals derived from the gut microbiota are shown in other
systems to be sufficient to restrain Th2 responses during experimental enteric nematode
infection, as MyD88-deficient mice insensitive to most Toll-like receptor (TLR)-mediated proin-
flammatory signals display stronger Th2 responses and more efficient parasite control against
H. polygyrus and T. muris [63].

Both gut microbes and parasitic nematodes such as H. polygyrus stimulate the differentiation of
regulatory T cells (Tregs) in order to escape elimination by the immune system [64,65]. Studies
in H. polygyrus-infected mice suggest that microbial Treg activation confounds the optimal
expression of protective Th2 responses and facilitates the prolonged survival of enteric
nematodes [21,66,67]. We have shown that germ-free mice displayed reduced parasite fitness
associated with low Treg/Th2 ratios and poor interleukin (IL)-10 production by intestinal
Tregs during H. polygyrus infection [66]. Nematode-infected germ-free mice largely lacked
Foxp3+RORγt+ Tregs, a subset previously reported to depend on the presence of gut microbes
and to regulate Th2-driven experimental gut inflammation and antinematode Th2 responses
[66,67]. Interestingly, somemicrobial species alsomitigate host damage during enteric nematode
infection (Figure 2). A. suum-infected pigs demonstrated enhanced parasite-specific IgA, IgG1,
and IgG2 responses, decreased small-intestinal eosinophilia, and restored intestinal glucose
uptake when fed with the probiotic Bifidobacterium animalis subsp. lactis [68].

Members of the order Clostridiales were shown to expand in the gut of mice infected with the
strictly enteric nematode H. polygyrus. This was associated with the elevated production of
SCFA from dietary fibers, the expansion of Tregs, a rise in local IL-10 and transforming growth
factor (TGF)-β production, and the control of allergen-induced Th2 cytokine responses in allergic
asthma [44]. Notably, elevated SCFA levels were also detected in the gut of A. suum-infected pigs
and in the majority of a small cohort of human volunteers infected with hookworms [44]. Thus, it
will be interesting to determine if distinct microbiota and SCFA profiles can be linked to a Th2/
Box 1. Interactions between Ascaris and the Non-bacterial Intestinal Biota

Few studies have investigated how Ascaris interacts with non-bacterial intestinal pathogens and commensals, including
viruses, fungi, protozoa, and other parasites. However, emerging work on the virome [90] and mycobiome [91] of the
human intestinal tract provides the basis for the identification of interactions between bacteriome, non-bacterial
communities, and the immune system of the host.

Parasite–Parasite Interactions

Multiple-species infections with other soil-transmitted helminths (Trichuris trichiura, Ancylostoma duodenale, Necator
americanus) are frequently seen in areas where Ascaris lumbricoides is endemic, but demonstrate heterogenic associa-
tions in prevalence and egg deposition [92,93]. Low levels of interaction between Ascaris and other nematode species
are also seen in experimental infections of pigs [94,95]. Epidemiological studies suggest that A. lumbricoides impairs
immunity against Giardia spp. [96] and Schistosoma mansoni [97]. Furthermore, cumulative effects regarding
malnourishment were demonstrated for coinfections with Ascaris and other helminth or protozoan parasites in both
humans [98] and pigs [99].

Parasite–Virus Interactions

Strong evidence for a direct interaction between helminths, host immunity, and viruses is seen in murine coinfection
models demonstrating impaired immunity against vaccinia virus in Ascaris-exposed mice [100].

Parasite–Fungus Interactions

Whilst the impact of Ascaris infection on the host mycobiome has not been addressed so far, mutual effects were ob-
served in vitro. These include the demonstration of antifungal or anthelmintic properties of cecropins released by Ascarids
and Aspergillus products, respectively [76,101], as well as the impaired embryonic development of Ascaris eggs exposed
to saprotrophic soil fungi [17,102].
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Figure 2. Potential Role of Bacteria during Invasion, Migration, and Reproduction of Ascaris. Upon ingestion,
stimuli derived from gut microbes may affect hatching rates of Ascaris eggs (A), guide the L3 stage to the site of tissue
invasion (B), and deviate the developing T helper (Th)2 response (C). Antimicrobial factors produced by the fourth larval
and adult stages are likely involved in microbiota changes during infection (D) which may regulate larval hatching during
ongoing exposure (E). Microbial metabolites and Ascaris-derived immunomodulators likely synergize in local and systemic
immune modulation (F). The production of antimicrobials by Ascaris may adapt to defend against bacterial pathogens,
regulate the composition of the parasite microbiome, as well as the metabolic environment, in order to secure parasite repro-
duction (G).
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Th17 balance influencing lung migration and the effectiveness of adaptive immune responses
during Ascaris infection.

Several studies reported the expansion of lactobacilli in mice experimentally infected with the en-
teric nematodes, H. polygyrus, Nippostrongylus brasiliensis, Trichinella spiralis, and T. muris
[21,69–71]. Probiotic members of this family support the differentiation of Tregs, thereby sup-
pressing Th2-mediated allergic airway inflammation in mice [72,73], while restricting inflammatory
reactions to Ascaris allergens in pigs [74]. Hence, compositional changes of the microbial com-
munity, alterations in the availability of microbial danger signals, or direct contact of immune
cells with gut microbes during Ascaris infection affects the quality of innate and adaptive immune
responses against the nematode.

Mechanisms and Molecules of Ascaris Modulating the Microbial Environment
Nematodes also interact directly with microbes through the secretion of a variety of effector
molecules (Table 1).A. suum has been shown to upregulate the expression of cationic antimicrobial
peptides (AMPs) when challenged with heat-inactivated E. coli, namely cecropins and members
of the A. suum antibacterial family (ASABF) [75,76]. This demonstrates that ascarids recognize and
258 Trends in Parasitology, March 2021, Vol. 37, No. 3
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Outstanding Questions
Do certain gut microbes promote the
establishment of Ascaris in the gut?

Do defensive microbes protect Ascaris
from microbial infections?

Can the gut microbiota and the local
metabolic environment be manipulated
to promote anthelmintic responses or
prevent Ascaris infection?

Does Ascaris alter host susceptibility to
important gut pathogens, such as
Salmonella?

Do certain bacterial species influence
(i) Ascaris egg hatching, (ii) mucosal
invasion, and (iii) tissue migration, as
is seen in other helminths?

Canwe identify an 'Ascaris-microbiome',
and how much interindividual variation
exists in nematodes within a single host
and between nematodes in different
hosts?
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respond to bacteria by inducing a defense response. Studies from our group have also detected
ASABFs and cecropins in the ES products of intestine-dwelling L4 and adult A. suum [23].
These products display diverse antibacterial activities, including bacterial growth inhibition, biofilm
disruption, and agglutination [23]. We have also demonstrated similar activities for the ES products
ofH. polygyrus [66]. These studies demonstrate that microbial signals are detected by nematodes,
eliciting an antimicrobial response.

In addition to direct bactericidal activity, nematodes also employ nonlethal defense mechanisms.
We and others have observed lectin-domain-containing proteins in A. suum [23], N. brasiliensis,
and H. polygyrus [77]. Harcus and colleagues characterized a C-type lectin protein from
H. polygyrus with similarities to C. elegans proteins previously described to be induced during
bacterial infection of the worm, capable of bacterial binding and neutralization [77]. Similarly, we
reported agglutinating activity of ES products from A. suum and H. polygyrus [23,66], suggesting
that nonlethal defense strategies are employed by these enteric nematodes. Accordingly,
H. polygyrus C-type lectin-domain-containing proteins are also predicted [77] to interact with
host cells, and one could imagine that the proteins provide dual functions of defending the
nematode against microbial and immune threats.

In addition to traditionally secreted protein effectors, intestinal parasites likely employ additional
mechanisms to shape the host microbiota, including the production of extracellular vesicles
(EVs) and metabolites. As with other helminths, Ascaris produces EVs containing nucleic acid
and protein cargo [78]. While vesicular miRNAs from H. polygyrus demonstrate immunomodula-
tory functions [79], the protein components have been largely understudied. The protein compo-
nents in Ascaris EVs contain lectins, though no other potential antimicrobial proteins were
reported [78]. However, during filter-aided preparation of the EVs, small peptides are likely
excluded from proteomic analysis [80]. Thus, if small AMPs are contained in EVs, this would
not have been observed. While parasite–host and parasite–parasite interactions via EVs have
been reported [81], to our knowledge parasite–microbiota interactions have not yet been
assessed. Interestingly, bacteria also produce EVs which can enter the host circulation [82].
Whether helminths can influence the contents of bacterial EVs, and how bacterial EVs may inter-
act with host cells or with nematodes to impact nematode fitness, remains to be determined.

Ascaris-produced metabolites may also influence the microbiota. As mentioned earlier, A. suum
can produce SCFAs [83] which impact host immunity but also shape gut microbial communities
and have implications for susceptibility to bacterial infection [84,85]. Intestinal metabolomic
changes associated with the enteric nematode H. polygyrus promoted coinfection with
Salmonella [86]. In vitro and murine models of Salmonella virulence show that SCFAs can
impair bacterial motility and biofilm formation [87], and confer colonization resistance and limit
Salmonella growth [88], with mixed effects on virulence gene expression [87–89]. These studies
indicate that Ascaris-derived metabolites themselves may influence coinfection by other gut
pathogens and this is worthy of in vivo study in pigs.

Concluding Remarks
In conclusion, Ascaris has developed various measures which may modulate the host microbiota
by restricting or supporting the growth of individual microbial species. The larval body migration
likely provides an advantage in dispersing cellular immune effector mechanisms to several sites
of the host's body before the parasite settles and completes development in the gut. After settle-
ment in the intestine the microbial diversity and composition appears to be modulated by Ascaris,
and we speculate that this creates a metabolic environment favorable to parasite survival and re-
production. Likewise, Ascarismay benefit from the expansion of specificmicrobes which support
Trends in Parasitology, March 2021, Vol. 37, No. 3 259
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the activity of regulatory cell populations and thereby counteract overt inflammatory reactions
against the parasite. To develop novel measures of interference with recurrent Ascaris infection,
future work will have to elucidate dependencies of Ascaris on specific microbial metabolites or
bacterial species (see Outstanding Questions). Investigation of the microbiota hosted by Ascaris
worms may provide a straightforward approach delineating which microbes can be considered
as detrimental or beneficial to parasite fitness. In light of recent findings and technological ad-
vances, such interactions can now be investigated in far more depth, revealing novel therapeutic
opportunities.
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