467 research outputs found

    Temporal dynamics of condition for estuarine fishes in their nursery habitats

    Get PDF
    The condition of individuals in a year class may contribute to recruitment variability due to differential survival of poor-and well-conditioned fish, but the temporal dynamics of juvenile fish condition are poorly understood. We examined inter- and intra-annual dynamics of condition for juveniles of 3 species collected from estuarine nursery areas of Chesapeake Bay from November 2010 to June 2014. We describe temporal patterns in length-based indices, the hepatosomatic index (HSI), and relative subdermal lipid estimates for juvenile summer flounder Paralichthys dentatus (n = 1771), Atlantic croaker Micropogonias undulatus (n = 3911), and striped bass Morone saxatilis (n = 874). Multiple indices provided a more complete understanding of energy-storage strategies for juveniles because temporal patterns among condition indices were not congruent for a given species. Most juvenile summer flounder and Atlantic croaker migrate from Chesapeake Bay in the fall, both species exhibited increases in subdermal lipids in the time period prior to migration. For all species, individuals that remained in the estuary during winter exhibited high HSI values, indicating a common energy-storage strategy during winter. Mean condition of juveniles varied among year classes, but differences were inconsistent among indices, suggesting that energy was differentially stored among tissues for these year classes. Densitydependent effects contributed to variation in mean condition for summer flounder and striped bass. Our understanding of recruitment variability may be improved by assessing annual differences in mean condition as revealed by multiple indic

    Nursery Habitat Quality Assessed by the Condition of Juvenile Fishes: Not All Estuarine Areas Are Equal

    Get PDF
    High-quality nursery habitats support greater numbers of juveniles that survive to adulthood, but characteristics underlying high-quality habitats remain elusive because their productivity varies spatially and temporally and may be species-specific. Fish condition is an energy-integrative measure of ecological interactions, stress, and activity within a habitat, such that juvenile fish condition is representative of the quality of nursery habitats. We apply spatially explicit models to examine patterns in nursery habitat quality of Virginia estuaries based on nutritional condition for Atlantic croaker Micropogonias undulatus, summer flounder Paralichthys dentatus, and striped bass Morone saxatilis. Environmental factors (water temperature, dissolved oxygen, salinity, and depth) positively influenced the condition of Atlantic croaker but had mixed effects on striped bass and summer flounder condition, despite co-location of these species. Over the observed range of environmental conditions, the potential impact of salinity was 1.7 to 6 times that of other environmental factors. The condition of Atlantic croaker was negatively influenced by conspecific density, indicating local abundance mediates habitat quality. Regional habitat effects on fish condition were apparent after adjusting for broad-scale environmental effects: on average, striped bass condition was 22% greater in habitats near tributary mouths, Atlantic croaker condition was 28% greater in upestuary habitats, and the adjusted mean condition of summer flounder associated with coastal lagoons and the eastern side of Chesapeake Bay was 100% greater than conspecifics from other regions. Not all habitats are equally suitable for juvenile stages of estuarine species, but locations that produce well-conditioned individuals reveal the environmental characteristics associated with high-quality nursery habitats that contribute to species-specific productivity

    Evaluation of Thermosalinograph and VIIRS Data for the Characterization of Near-Surface Temperature Fields

    Get PDF
    Detailed understanding of submesoscale processes and their role in global ocean circulation is constrained, in part, by the lack of global observational datasets of sufficiently high resolution. Here, the potential of thermosalinograph (TSG) and Visible Infrared Imager Radiometer Suite (VIIRS) data is evaluated, to characterize the submesoscale structure of the near-surface temperature fields in the Gulf Stream and Sargasso Sea. In addition to spectral density, the structure function is considered, a statistical measure less susceptible to data gaps, which are common in the satellite-derived fields. The structure function is found to be an unreliable estimator, especially for steep spectral slopes, nominally between 2 and 3, typical of the Gulf Stream and Sargasso regions. A quality-control threshold is developed based on the number and size of gaps to ensure reliable spectral density estimates. Analysis of the impact of gaps in the VIIRS data on the spectra shows that both the number of missing values and the size of gaps affect the results, and that the steeper the spectral slope the more significant the impact. Furthermore, the TSG, with a nominal resolution of 75 m, captures the spectral characteristics of the fields in both regions down to scales substantially smaller than 1 km, while the VIIRS fields, with a nominal resolution of 750 m, reproduce the spectra well down to scales of about 20 km in the Sargasso Sea and 5 km in the Gulf Stream. The scales at which the VIIRS and TSG spectra diverge are thought to be determined by sensor and retrieval noise

    Ecological Role of Blue Catfish in Chesapeake Bay Communities and Implications for Management

    Get PDF
    Rapid increase in abundance and expanded distribution of introduced blue catfish Ictalurus furcatus populations in the Chesapeake Bay watershed have raised regional management concerns. This study uses information from multiple surveys to examine expansion of blue catfish populations and document their role in tidal river communities. Originally stocked in the James, York, and Rappahannock River systems for development of commercial and recreational fisheries, blue catfish have now been documented in adjacent rivers and have expanded their within-river distribution to oligo- and mesohaline environments. Range expansions coincided with periods of peak abundance in 1996 and 2003 and with the concurrent decline in abundance of native white catfish I. catus. Blue catfish in these systems use a diverse prey base; various amphipod species typically dominate the diet of smaller individuals ([FL]), and fishes are common prey for larger blue catfish (\u3e300 mm FL). Recent studies based on stable isotope analyses suggest that adult blue catfish in these systems are apex predators that feed extensively on important fishery resources, including anadromous shads and herrings Alosa spp. and juvenile Atlantic menhaden Brevoortia tyrannus. Minimizing effects on Chesapeake Bay communities by controlling high densities of blue catfish populations is a primary goal of management, but conflicting demands of the commercial and recreational sectors must be resolved. Further, low market demand and human consumption concerns associated with purported accumulation of contaminants in blue catfish pose additional complications for regulating these fisheries.https://scholarworks.wm.edu/vimsbooks/1009/thumbnail.jp

    Injection technology use reported by swine veterinarians in the United States

    Get PDF
    The objective of this study was to determine injection practices on swine farms as reported by veterinarians. Participants were members of the American Association of Swine Veterinarians. Veterinarians that self-reported as clinicians were contacted for participation. A web-based survey was administered regarding farm demographics, injection technology, needle types and sizes, and injection locations for each stage of production and for pharmaceutical classes. Additionally, descriptions of protocols for handling a broken needle event were recorded

    Manifestation of the Hofstadter butterfly in far-infrared absorption

    Full text link
    The far-infrared absorption of a two-dimensional electron gas with a square-lattice modulation in a perpendicular constant magnetic field is calculated self-consistently within the Hartree approximation. For strong modulation and short period we obtain intra- and intersubband magnetoplasmon modes reflecting the subbands of the Hofstadter butterfly in two or more Landau bands. The character of the absorption and the correlation of the peaks to the number of flux quanta through each unit cell of the periodic potential depends strongly on the location of the chemical potential with respect to the subbands, or what is the same, on the density of electrons in the system.Comment: RevTeX file + 4 postscript figures, to be published Phys. Rev. B Rapid Com

    Apolipoprotein E (APOE) genotype regulates body weight and fatty acid utilization—Studies in gene-targeted replacement mice

    Get PDF
    Scope Of the three human apolipoprotein E (APOE) alleles, the ε3 allele is most common, which may be a result of adaptive evolution. In this study, we investigated whether the APOE genotype affects body weight and energy metabolism through regulation of fatty acid utilization. Methods and results Targeted replacement mice expressing the human APOE3 were significantly heavier on low- and high-fat diets compared to APOE4 mice. Particularly on high-fat feeding, food intake and dietary energy yields as well as fat mass were increased in APOE3 mice. Fatty acid mobilization determined as activation of adipose tissue lipase and fasting plasma nonesterified fatty acid levels were significantly lower in APOE3 than APOE4 mice. APOE4 mice, in contrast, exhibited higher expression of proteins involved in fatty acid oxidation in skeletal muscle. Conclusion Our data suggest that APOE3 is associated with the potential to more efficiently harvest dietary energy and to deposit fat in adipose tissue, while APOE4 carriers tend to increase fatty acid mobilization and utilization as fuel substrates especially under high-fat intake. The different handling of dietary energy may have contributed to the evolution and worldwide distribution of the ε3 allele

    Density-Dependence Mediates the Effects of Temperature on Growth of Juvenile Blue Catfish in Nonnative Habitats

    Get PDF
    The combined effects of conspecific density and climate warming on the vital rates of invasive fish species have not been well studied, but may be important in predicting how successful they will be in the future. We evaluated the effects of temperature and population density on monthly time series of sizes of age-0 Blue Catfish Ictalurus furcatus in the James, York, and Rappahannock River subestuaries (defined here as tidally influenced bodies of water that feed into the Chesapeake Bay) from 1996 to 2017, using growing degree-days (GDDs, °C day) as a measure of thermal time. Our pre- dictive linear mixed-effects model explained 86% of the variation in the length of age-0 Blue Catfish. In addition, it indi- cated a strong positive effect of temperature on the growth rate of age-0 Blue Catfish, with individual fish biomass during warm years up to 63% higher than during cool years. Growth rate was influenced negatively by the abundance of age-0 and older fish, resulting in at least fourfold differences in the predicted biomass of Blue Catfish by the end of the first year of life depending on conspecific density. We also observed regional differences in the growth rates of Blue Catfish in the three subestuaries we examined; although growth occurred in all subestuaries, growth was highest for the Rappahannock River population even though this river accumulated the fewest GDDs. Rising water temperatures due to global climate change will likely increase the growth rate of age-0 Blue Catfish in the Chesapeake Bay region, potentially intensifying the negative impacts of this invasive species on the ecology of Chesapeake Bay. However, individual populations respond differently to warming temperatures, and thus, potential increases in the growth rate of age-0 Blue Catfish may be par- tially offset by local conditions that may serve to limit growth

    A framework for dealing with dynamic buildings

    Get PDF
    ABSTRACT: The design world of architects and engineers is changing. Costs arising during the whole life cycle of a building are being taken into account. Therefore, complex tools to support design decisions are coming up, and an increasing number of experts from a great variety of disciplines will have to cooperate in a more and more interrelated and sophisticated manner. Our hypothesis is, that an integrated framework based on the metaphor of a "dynamic building" as component-based, spatial model will bridge between the infor-mation technical representation and the "classical" building planning. All planning, cooperation, usage, and aging processes of the building life cycle will be reflected in such a "virtual" dynamic building, for which we are developing an appropriate framework

    Impact of Dreissena fouling on the physiological condition of native and invasive bivalves : interspecific and temporal variations

    Get PDF
    The impact of Dreissena fouling on unionids has hardly been studied in Europe, despite the fact that in some ecosystems (e.g. Lake Balaton, Hungary) infestations of several hundreds to a thousand individuals per unionid have been observed. At present, the zebra mussel Dreissena polymorpha is a dominant species in Lake Balaton and in the last decade three other invasive bivalves were introduced, potentially increasing the pressure on native unionid survival. We examined whether the fouling of dreissenids (zebra and quagga (D. rostriformis bugensis) mussels) has a negative impact on native (Anodonta anatina, Unio pictorum and U. tumidus) and invasive (Corbicula fluminea and Sinanodonta woodiana) bivalves and whether there are any interspecific and temporal variations in fouling intensity and physiological condition measured by standard condition index and glycogen content. A significant negative impact was detected on native unionids only in July and September (no impact was detected in May), when the fouling rate was high. For invasive species, a significant negative impact was detected on S. woodiana with a high level of dressenid infestation; whereas no significant impact was detected on C. fluminea. Overall, this study confirms that Dreissena may threaten unionid species including the invasive S. woodiana, although high interspecific and temporal variations were observed. This situation should be taken into account in future ecological and conservational assessments because species respond differently to Dreissena fouling and effects seem to be more pronounced in late summer/early autumn. In addition, this study provides the first evidence that the invasive C. fluminea appear to be less vulnerable to dressenid fouling.The study was supported by the Hungarian Scientific Fund (KTIA-OTKA) under the contract No. CNK80140
    corecore