16 research outputs found

    Usability of Error Messages for Introductory Students

    Get PDF
    Error messages are an important tool programmers use to help find and fix mistakes or issues in their code. When an error message is unhelpful, it can be difficult to find the issue and may impose additional challenges in learning the language and concepts. Error messages are especially critical for introductory programmers in understanding problems with their code. Unfortunately, not all error messages in programming are beneficial for novice programmers. This paper discusses the general usability of error messages for introductory programmers, analyses of error messages in compilers and DrRacket, and two methodologies intended to improve error handling

    Developing Beginner-Friendly Programming Error Messages

    Get PDF
    The motivation for our work is to introduce a recently developed programming language, Clojure, in a beginner computer science (CSci) class at the University of Minnesota, Morris. Clojure is an industryaccepted programming language that provides significant benefits for beginner programmers, such as focus on a functional approach to programming which, in UMM experience, provides a good foundation for subsequent CSci curriculum. Learning Clojure in an introductory class opens opportunities for students to collaborate on numerous worldwide projects, as well as take advantage of improvements in modern computing hardware. However, Clojure is challenging to use because of its complicated handling of programmers’ mistakes. Mistakes in computer programming are a natural part of developing software. When a mistake happens, there is a system to notify the programmer of an error. The specific information that the programmer receives, known as an error message, may or may not be helpful in identifying the issue. Clojure error messages are notorious for being confusing to beginners. We are developing a system that intercepts the existing Clojure error messages and automatically rephrases them for beginner programmers. We will conduct usability tests by observing the interactions between beginner programmers and our system, and the feedback we receive will be used to further improve our project. We present our new error message handling and discuss testing our system with new programmers.https://digitalcommons.morris.umn.edu/urs_2015/1005/thumbnail.jp

    Accelerating Bayesian hierarchical clustering of time series data with a randomised algorithm

    Get PDF
    We live in an era of abundant data. This has necessitated the development of new and innovative statistical algorithms to get the most from experimental data. For example, faster algorithms make practical the analysis of larger genomic data sets, allowing us to extend the utility of cutting-edge statistical methods. We present a randomised algorithm that accelerates the clustering of time series data using the Bayesian Hierarchical Clustering (BHC) statistical method. BHC is a general method for clustering any discretely sampled time series data. In this paper we focus on a particular application to microarray gene expression data. We define and analyse the randomised algorithm, before presenting results on both synthetic and real biological data sets. We show that the randomised algorithm leads to substantial gains in speed with minimal loss in clustering quality. The randomised time series BHC algorithm is available as part of the R package BHC, which is available for download from Bioconductor (version 2.10 and above) via http://bioconductor.org/packages/2.10/bioc/html/BHC.html. We have also made available a set of R scripts which can be used to reproduce the analyses carried out in this paper. These are available from the following URL. https://sites.google.com/site/randomisedbhc/

    Drivers of genetic diversity in secondary metabolic gene clusters within a fungal species

    Get PDF
    Drivers of genetic diversity in secondary metabolic gene clusters within a fungal speciesFilamentous fungi produce a diverse array of secondary metabolites (SMs) critical for defense, virulence, and communication. The metabolic pathways that produce SMs are found in contiguous gene clusters in fungal genomes, an atypical arrangement for metabolic pathways in other eukaryotes. Comparative studies of filamentous fungal species have shown that SM gene clusters are often either highly divergent or uniquely present in one or a handful of species, hampering efforts to determine the genetic basis and evolutionary drivers of SM gene cluster divergence. Here, we examined SM variation in 66 cosmopolitan strains of a single species, the opportunistic human pathogen Aspergillus fumigatus. Investigation of genome-wide within-species variation revealed 5 general types of variation in SM gene clusters: nonfunctional gene polymorphisms; gene gain and loss polymorphisms; whole cluster gain and loss polymorphisms; allelic polymorphisms, in which different alleles corresponded to distinct, nonhomologous clusters; and location polymorphisms, in which a cluster was found to differ in its genomic location across strains. These polymorphisms affect the function of representative A. fumigatus SM gene clusters, such as those involved in the production of gliotoxin, fumigaclavine, and helvolic acid as well as the function of clusters with undefined products. In addition to enabling the identification of polymorphisms, the detection of which requires extensive genome-wide synteny conservation (e.g., mobile gene clusters and nonhomologous cluster alleles), our approach also implicated multiple underlying genetic drivers, including point mutations, recombination, and genomic deletion and insertion events as well as horizontal gene transfer from distant fungi. Finally, most of the variants that we uncover within A. fumigatus have been previously hypothesized to contribute to SM gene cluster diversity across entire fungal classes and phyla. We suggest that the drivers of genetic diversity operating within a fungal species shown here are sufficient to explain SM cluster macroevolutionary patterns.National Science Foundation (grant number DEB-1442113). Received by AR. U.S. National Library of Medicine training grant (grant number 2T15LM007450). Received by ALL. Conselho Nacional de Desenvolvimento Cientı´fico e 573 Tecnológico. Northern Portugal Regional Operational Programme (grant number NORTE-01- 0145-FEDER-000013). Received by FR. Fundação de Amparo à Pesquisa do 572 Estado de São Paulo. Received by GHG. National Institutes of Health (grant number R01 AI065728-01). Received by NPK. National Science Foundation (grant number IOS-1401682). Received by JHW. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    One thousand DNA barcodes of piranhas and pacus reveal geographic structure and unrecognised diversity in the Amazon

    Get PDF
    Piranhas and pacus (Characiformes: Serrasalmidae) are a charismatic but understudied family of Neotropical fishes. Here, we analyse a DNA barcode dataset comprising 1,122 specimens, 69 species, 16 genera, 208 localities, and 34 major river drainages in order to make an inventory of diversity and to highlight taxa and biogeographic areas worthy of further sampling effort and conservation protection. Using four methods of species discovery - incorporating both tree and distance based techniques - we report between 76 and 99 species-like clusters, i.e. between 20% and 33% of a priori identified taxonomic species were represented by more than one mtDNA lineage. There was a high degree of congruence between clusters, with 60% supported by three or four methods. Pacus of the genus Myloplus exhibited the most intraspecific variation, with six of the 13 species sampled found to have multiple lineages. Conversely, piranhas of the Serrasalmus rhombeus group proved difficult to delimit with these methods due to genetic similarity and polyphyly. Overall, our results recognise substantially underestimated diversity in the serrasalmids, and emphasise the Guiana and Brazilian Shield rivers as biogeographically important areas with multiple cases of across-shield and within-shield diversifications. We additionally highlight the distinctiveness and complex phylogeographic history of rheophilic taxa in particular, and suggest multiple colonisations of these habitats by different serrasalmid lineages. © 2018 The Author(s)
    corecore