
Scholarly Horizons: University of Minnesota, Morris
Undergraduate Journal

Volume 2 | Issue 2 Article 5

2015

Usability of Error Messages for Introductory
Students
Paul A. Schliep
University of Minnesota, Morris

Follow this and additional works at: http://digitalcommons.morris.umn.edu/horizons

Part of the Software Engineering Commons

This Article is brought to you for free and open access by University of Minnesota Morris Digital Well. It has been accepted for inclusion in Scholarly
Horizons: University of Minnesota, Morris Undergraduate Journal by an authorized administrator of University of Minnesota Morris Digital Well. For
more information, please contact skulann@morris.umn.edu.

Recommended Citation
Schliep, Paul A. (2015) "Usability of Error Messages for Introductory Students," Scholarly Horizons: University of Minnesota, Morris
Undergraduate Journal: Vol. 2: Iss. 2, Article 5.
Available at: http://digitalcommons.morris.umn.edu/horizons/vol2/iss2/5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Minnesota, Morris (UMM): Digital Well

https://core.ac.uk/display/235247494?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.morris.umn.edu/horizons?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol2%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.morris.umn.edu/horizons?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol2%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.morris.umn.edu/horizons/vol2?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol2%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.morris.umn.edu/horizons/vol2/iss2?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol2%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.morris.umn.edu/horizons/vol2/iss2/5?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol2%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.morris.umn.edu/horizons?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol2%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol2%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.morris.umn.edu/horizons/vol2/iss2/5?utm_source=digitalcommons.morris.umn.edu%2Fhorizons%2Fvol2%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:skulann@morris.umn.edu

Usability of Error Messages for Introductory Students

Paul A. Schliep
Division of Science and Mathematics

University of Minnesota, Morris
Morris, Minnesota, USA 56267
schli202@morris.umn.edu

ABSTRACT
Error messages are an important tool programmers use to
help find and fix mistakes or issues in their code. When
an error message is unhelpful, it can be difficult to find the
issue and may impose additional challenges in learning the
language and concepts. Error messages are especially crit-
ical for introductory programmers in understanding prob-
lems with their code. Unfortunately, not all error messages
in programming are beneficial for novice programmers. This
paper discusses the general usability of error messages for in-
troductory programmers, analyses of error messages in com-
pilers and DrRacket, and two methodologies intended to im-
prove error handling.

Keywords
Novice programmers, usability, error messages, usability stud-
ies, compiler errors, syntax errors

1. INTRODUCTION
One of the most important foundations of computer pro-

gramming is the communication between the system and
the user, specifically in the error messages produced by the
system. These error messages are especially important for
introductory-level computer science students to help them
resolve issues in their program because the error messages
are the primary source for understanding what is wrong.
According to Marceau et al., “[students] lack the experience
to decipher complicated or poorly-constructed feedback” [4].
The first rule of good message design is to be sure that the
error does not add confusion [2]. Difficulties in understand-
ing error messages can often lead the programmers to frus-
tration because the error message is either too complicated
to understand or led them down the wrong path [5], which
can sometimes introduce new errors [1].

Various studies have been conducted on modern program-
ming languages’ error messages to evaluate their effective-
ness in helping novice programmers. The results have shown

This work is licensed under the Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Fran-
cisco, California, 94105, USA.
UMM CSci Senior Seminar Conference, December 2013 Morris, MN.

that students struggle with various elements of error mes-
sages such as terminology and source highlighting [1, 7].
Several tools and heuristics are being developed to help ad-
dress issues in error message usability. The goals of these
methodologies are to help introductory programmers locate
the issue in the program and guide the programmers to a
solution. The purpose of this paper is to discuss analyses
of error message design and its usability for introductory
students in the scope of a class (meaning students’ interac-
tions with programming in a lab setting and at home), and
how these developed methodologies help improve the user
experience with error messages.

This paper is divided into four sections. In Section 2 we
provide background on usability studies, dynamic and static
typing, compiler and runtime errors, and an overview of lan-
guages and tools used. In Section 3 we focus on analyses
of the usability of error messages in development environ-
ments and compiler messages for introductory students and
how those analyses were performed. In Section 4 we ex-
amine Marceau et al.’s recommendations for error message
design [5] and then we explore Denny et al.’s syntax error
enhancement tool [1].

2. BACKGROUND
In order to discuss the analyses of error messages, we

need to understand several concepts related to error types
and usability. These concepts include compiler errors, syn-
tax errors, runtime errors, usability studies, and Human-
Computer Interaction. We also introduce dynamically and
statically typed languages and their differences. We then
discuss the programming languages and tools used in the
analysis of the error messages. We will focus on the Racket,
C++, and Java programming languages and the integrated
development environment (IDE) DrRacket.

2.1 Human-computer interaction and meth-
ods of usability analysis

The study of Human-Computer Interaction, or HCI, is
focused on how computer technology is used, specifically
on the interfaces between the user and the programs on the
computer. As Traver notes, “HCI is a discipline that aims to
provide user interfaces that make working with a computer
a more productive, effective, and enjoyable task” [7]. Much
of the research presented in this paper is viewed from an
HCI perspective and emphasizes usability.

In order to analyze these messages from an HCI per-
spective and attain qualitative and quantitative information
about their usability, a case study may be performed. A

1

Schliep: Usability of Error Messages for Introductory Students

Published by University of Minnesota Morris Digital Well, 2015

case study is a research method that closely studies a group
of participants (in this paper, the participants are introduc-
tory students in the scope of the class) and collects data
about participants interactions by observations and inter-
views. Many of the studies analyzed in this paper are using
a case study design. Using the data obtained from these
studies a t-test may be performed, which is a statistical ex-
amination of two data sets and finds if they are significantly
different from each other. The significance in a t-test is de-
termined by the calculated probability, or the p-value. The
p-value is the estimated probability that there is no signifi-
cant difference in the data sets. In this paper, a p-value <
0.05 will be considered significant.

2.2 Compiler and runtime errors
When writing code, a programmer may receive various er-

ror messages during different phases of the program, runtime
and compile time. A compiler is a program that converts
source code written in a programming language to a lower-
level language understood by a processor or interpreter so
that instructions can be executed. A compilation error is re-
turned when the compiler fails to compile a piece of program
source code. A program will not run if there is a compila-
tion error because the compiler will not be able to create
executable code to run if there are errors the compiler finds.

We also discuss several examples of syntax errors in this
paper. A syntax error is a type of compilation error that
occurs when the code does not conform to the syntactical
order expected by the parser. The parser is a program (usu-
ally part of a compiler) that receives input as source code
and builds it into a structural representation of the input
while checking for correct syntax of the input. As Kum-
merfield and Kay note, “The usability of compiler errors is
important because syntax error correction is the first step
in the debugging process. It is not possible to continue pro-
gram development until the code compiles. This means it is
a crucial part of the error correction process.” [3]

Below is an example of a compiler error in Java. Here,
the programmer is defining seven to be 2 + 5, but forgot to
close the parenthesis. The compiler caught the syntax error,
so the program did not execute.

int seven = (2 + 5;

error: ’)’ expected

A runtime error is an error detected when the program
has successfully compiled, but fails at the execution time.
Runtime errors often indicate problems in the logic of the
program, such as running out of memory, and can be harder
to find and debug. Below is an example of a runtime error in
Java. Here, the user wanted to print out a part of the string,
"hello" but had the wrong bounds in the substring com-
mand (which returns a substring of a string from the start of
the index up to but not including the end of the index). The
error is telling the programmer that the wrong bounds are
given and are out of the range of the string "hello". The
programmer should have given the bounds (3,5) in order
for the program to successfully execute.

String string = "hello";

System.out.print(string.substring(3,6));

java.lang.StringIndexOutOfBoundsException:

String index out of range: 6

2.3 Statically and dynamically typed
While we do not mention these concepts in any study, it

is important to note how some languages differ in error han-
dling. In statically typed languages, type checking is done
at compile-time and objects are bound to types. This means
that when programming in statically typed languages, a pro-
grammer will need to pay attention to how a variable’s type
is cast. However, statically typed languages provide benefits
such as earlier detection of programming mistakes.

A dynamically typed language means a type is interpreted
at runtime rather than compile time and variables in the lan-
guage are not bound to types. Since the runtime system of
a dynamically typed language deduces type and type con-
versions, a programmer does not have to worry about type
declaration while writing code.

As dynamically and statically typed languages differ in
how types are handled, something can be legal in dynami-
cally typed and illegal in statically typed language. Consider
the following example:

personName = "Francis"

personName = 7

This sequence of statements is illegal in a statically typed
language since we are binding a string to personName, then
an integer to personName. This statement would then throw
an error during compile time. This is a legal statement in a
dynamically typed language, however, since variables do not
have types in dynamic languages. Note that this statement
would not work in a purely function language, or a functional
language that does not allow side effects, as you can not
change the value of a variable.

2.4 Overview of programming languages and
tools analyzed

In section 3, we discuss a study performed by Marceau et
al. that analyzes the error messages in the DrRacket inte-
grated development environment [4]. An integrated develop-
ment environment, or IDE, is an application that has pack-
aged several programs typically consisting of a text editor,
compiler, and various debugging tools. An IDE is impor-
tant for introductory programming classes because it offers
useful error reporting not seen in the language and can help
a student debug their programs more easily. For example,
an IDE may be able to highlight the offending line of code
when the program fails or display custom error messages.

Racket is a member of the Lisp family of programming
languages designed for programmers of various levels and is
especially useful for introductory-level programmers. Racket
is a functional language, which means it uses a program-
ming style of building elements of programs while retaining
immutable data structures and without directly manipulat-
ing memory or changing state. Functional languages gen-
erally work well in teaching programming concepts to stu-
dents since functional approaches emphasize core computer
science concepts such as recursion. Racket is a dynamically
typed language, so the type errors are handled at runtime.

An IDE commonly used in first computer science courses
is DrRacket. DrRacket is an IDE meant for writing pro-
grams in Racket and is commonly geared toward introduc-
tory students. DrRacket offers libraries for students to pro-
gram at various levels and several debugging features such
as text highlighting and custom error messages.

2

Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal, Vol. 2 [2015], Iss. 2, Art. 5

http://digitalcommons.morris.umn.edu/horizons/vol2/iss2/5

5%

28%

3%

2%

14%

16%

14%

0%

16%

17%

12%

3%

8%

4%

14%

14%

8%

13%

arg. count

parens matching

runtime cond

runtime type

syntax cond

syntax define

syntax func call

syntax struct

unbound id.

%error

Lab Number #1 #2 #3 #4 #5 #6

48%

24%

0%

100%

51%

50%

64%

0%

16%

0.22

0.58

0.00

0.15

0.59

0.68

0.74

0.00

0.21

27%

14%

100%

73%

50%

50%

17%

32%

40%

0.74

0.27

0.49

0.91

0.31

1.14

0.37

0.43

0.85

14%

17%

4%

16%

6%

6%

12%

5%

16%

17%

0%

20%

40%

26%

15%

14%

92%

14%

0.33

0.00

0.12

0.93

0.24

0.14

0.26

0.73

0.32

13%

14%

6%

8%

10%

7%

23%

0%

16%

20%

0%

72%

22%

28%

24%

27%

0%

0%

0.24

0.00

0.40

0.17

0.25

0.14

0.55

0.00

0.00

35%

13%

8%

6%

9%

2%

4%

1%

20%

21%

0%

78%

44%

20%

17%

29%

0%

7%

0.74

0.00

0.62

0.26

0.17

0.03

0.12

0.00

0.14

12%

10%

1%

3%

11%

3%

13%

0%

34%

31%

15%

100%

38%

11%

38%

38%

0%

13%

0.36

0.15

0.06

0.13

0.12

0.10

0.48

0.00

0.44

%bad #bad %error %error %error %error %error%bad %bad %bad %bad %bad#bad #bad #bad #bad #bad

%error:
%bad:
#bad:

KEY:
Percentage of error messages during lab of the given category of errors
Percentage of error messages that were poorly responded to
Estimate of the number of errors in the category that each student responded poorly to

Figure 1: Results from DrRacket study

We use C++ and Java in several examples throughout this
paper. C++ and Java are widely used programming lan-
guages not designed for introductory programming. How-
ever, C++ and Java are often taught in a first computer
science course. C++ and Java are both imperative lan-
guages. Imperative programming is a programming style
that, as opposed to functional programming, uses a sequence
of statements to build a computation using memory manip-
ulation and changing the state of objects These languages
fall in the category of object-oriented programming, or OOP,
which is a method of programming based on class hierarchy
and is based around creating objects, which are data struc-
tures that contain a set of routines called methods. Java
and C++ are statically typed languages, so a programmer
will receive type errors during compile time.

3. ANALYSES
In this section, we discuss two different studies performed

on the usability of error messages. The first analysis will
discuss how well the error messages in Racket and DrRacket
help introductory students debug their programs. The sec-
ond analysis will discuss the effectiveness of compiler error
messages in the C++ programming language.

3.1 Analysis of error messages in Racket and
DrRacket

Marceau, Fisler, and Krishnamurthi helped design Dr-
Racket’s error messages so that they can be more helpful
to beginner programmers. However, Marceau et al. still no-
ticed students struggling with debugging and understanding
the error messages, so the authors were interested in seeing
how their students responded to these error messages and
identifying specific error messages that performed poorly [5].
In the spring of 2010, Marceau, Fisler, and Krishnamurthi
ran a case study on error messages in DrRacket. The study
involved configuring DrRacket to save a copy of each pro-
gram a student tried to run and the error message the stu-
dent received through six 50 minute once-per-week lab ses-

sions [4]. The authors were interested in which error mes-
sages are effective and how well DrRacket’s text highlighting
can help a student find the error in their program.

In order to measure effectiveness, the authors developed
a rubric to determined whether the student made a reason-
able edit in response to the error message [4]. The rubric
was meant to distinguish whether an error message would
fail or succeed. They determined that an error message is
effective if a student can read it, understand it, and use that
information to figure out how to resolve the issue.

The following Racket code (modified from [4]) shows an
example of an error message in DrRacket that Marceau et
al. found as not effective for helping a student debug their
program.

1 (define (label-near? name bias word1 word2)

2 (cond

3 (and (cond [(string=? name word1) "Name Located"]

4 [(string=? bias word2) "Bias Located"])

5 (cond [(string=? name word2) "Name Located"]

6 [(string=? bias word2) "Bias Located"])

7 "Mark")

8))

-> and: found a use of ’and’ that does not follow

an open parenthesis

The message is contradicting the code as and does fol-
low an open parenthesis, but the parser thinks and does not
have an open parenthesis before it and claims that there
needs to be an open parenthesis. Unfortunately, to under-
stand it, the programmer must realize that parser attributed
the open parenthesis before the and to the cond. The ac-
tual underlying issue is a misuse of and on line 3 with the
cond on line 2, but trying to decipher that issue from the
provided error message may be confusing to an introductory
programmer.

Figure 1 shows the results (modified from [4]) of the study
by Marceau et al. They grouped messages into the nine

3

Schliep: Usability of Error Messages for Introductory Students

Published by University of Minnesota Morris Digital Well, 2015

most common error categories in the results gathered from
the study, as seen on the left side of the table. The results of
their data analysis are seen in figure 1. The values of interest
are the #bad values enclosed in a box and the highest %bad
values.

The data the authors gathered helped identify errors stu-
dents found challenging. The authors found that students
have difficulties with certain errors at different points in the
course, as expected since curricular aspects of the labs affect
error patterns. Many of the errors students struggled with
were consistent with the progression of the course material,
such as difficulties with syntax errors in the first lab since
students are still beginning to learn the language syntax.

However, the data is not entirely a representation of stu-
dents’ conceptual difficulties with the course, as Marceau et
al. found. The error message a student receives, accord-
ing to Marceau et al., “is often not a direct indicator of the
underlying error” [4]. For example, in lab number six, nu-
merous unbound-id errors or unbound identifiers occurred.
An unbound-id is when the compiler finds a variable that
was not defined. However, the authors found that the ac-
tual problem students had was with improperly using field
reference operators. The actual errors the students should
have received was not given. This suggests that there are
some issues in the effectiveness of the error messages.

3.2 Analysis of compiler messages in C++
Compiler error messages are often cryptic and difficult to

understand for many programmers, especially for students
who are new to programming. Unfortunately, as Traver
notes, “most related disciplines, including compiler technol-
ogy, have not paid much attention to this important aspect
that affects programmers significantly, apparently because
it is felt that programmers should adapt to compilers” [7].
Traver proposed to research compiler error message usability
from a strictly HCI viewpoint. Thus, the discussion below
does not consider technical restraints, but rather how us-
able compiler error messages are for helping introductory
programmers resolve issues with their program.

In the Fall semester of 2002 at Jaume I University, Traver
conducted a case study on students’ work with compiler
error messages in C++ in an introductory computer sci-
ence course. The motivation of this study is to gain insight
on which errors students are struggling with in the course.
Traver gathered data from the students’ interactions with
C++ throughout the semester and wrote up analyses of the
error messages received in 5 separate parts.

• The error message received from the compiler

• The source code that caused the original error

• The diagnostic of why the error occurred

• An alternative error message that may help lead more
directly to the true diagnosis of the issue.

• A comment about why the error message is not helpful

Below is an example of an error message in C++ analyzed
in the study along with the source code that caused the
error [7] (in the interest of space, we have not included the
other parts of the analysis):

Offending Code:

SavingAccount::SavingAccount(){

float SavingAccount::getInterestRate() {

return rate;

}

Error Message:

In method ’SavingAccount::SavingAccount()’:

declaration of

’float SavingAccount::getInterestRate()’

outside of class is not definition

Alternative error message:

A function declaration inside a function body is

not possible. Did you forget ’}’ to close the

body of the previous function definition?

In this case, the programmer forgot to close the curly
bracket for the body of the method, so a syntax error would
be thrown. Although this is a relatively easy error to iden-
tify, when a program has multiple sets of braces, it can be
easy to miss some braces along the way. Traver found that
this error message might not be suitable for every program-
mer because it does not provide any noticeable clues that the
error is a missing bracket. The author of the study noted
that this type of error message should “convey a clear mes-
sage that the programmer can quickly understand and that
is useful for fixing the error”, but the error message given to
the user would not accomplish this for students who are still
new to programming [7].

No quantitative data was gathered in this case study.
However, Traver found from this research (and previous re-
search) that the usability of compiler errors is a well-known
issue and they do not always properly indicate the cause
of an error to the programmer. However, the author hopes
that approaches will be considered to address the issues in
compiler error message design.

4. METHODOLOGIES
In this section, we discuss three methodologies and tools

proposed to improve the usability of error messages. The
first methodology we discuss is a set of recommendations for
improving the usability of error messages in IDEs, specifi-
cally in DrRacket. For the second approach, we discuss an
attempt to enhance syntax error messages in Java and how
well these modified error messages improve over the original.

4.1 Recommendations for error messages in
IDEs

After Marceau et al. analyzed their data from the case
study (as detailed in section 3.1), they found that students
struggled to respond to error messages. Through their re-
search, they were able to develop a list of proposed methods
of improving error messages, specifically for DrRacket, “but
they should apply just as well in any other programming
language used for teaching, including those with graphical
syntaxes” [5]. They wanted to maintain two integral princi-
ples in error message design for their proposals:

• Error messages should not propose solutions as these
solutions can lead students down the wrong path and
can not cover every scenario a student may encounter.

• Error messages should not prompt students toward in-
correct edits. Source highlighting can cause issues and
when not correctly implemented can cause more errors.

4

Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal, Vol. 2 [2015], Iss. 2, Art. 5

http://digitalcommons.morris.umn.edu/horizons/vol2/iss2/5

Green
Blue

Green

Red

Red

Blue
Green Red

Figure 2: Example of color coded message

The first recommendation is simplifying vocabulary used
in error messages. The authors found that while DrRacket
is “accurate and consistent in its use of technical vocabu-
lary”, “some of its terms are overly precise relative to terms
that students already know” [5]. For example, the term
identifier is used in DrRacket error messages. However,
the term variable is a term students are more likely to be fa-
miliar with [5]. Marceau et al. also argue that non-simplified
vocabulary is appropriate for an introductory computer sci-
ence course, and thus decided simpler vocabulary may be
better suited in beginner levels of DrRacket.

Marceau et al. also wanted error messages to be explicit
about inconsistencies, specifically with function or construc-
tor usage. They found that DrRacket highlights the source
expression where the variable or constructor is called, but
not the definition. The highlighting suggests edits should be
made in the expression, but the error can also occur within
the definition of the variable or constructor, which does not
get highlighted when an error like this occurs. While an
IDE may not be able to identify whether a definition or its
usage is the issue, it should not steer students in the wrong
direction [5].

The authors then propose that error messages should high-
light every reference and its corresponding code with a dis-
tinct color in order to help students match message terms
to code fragments. They believe this should help resolve
ambiguity about highlighting and ambiguous references (an
example of an ambiguous reference is highlighted in blue in
figure 2). Figure 2 shows an example of a color coded error
message, modified from [5]. The red highlights the defini-
tion, the green highlights the clause, and the blue highlights
the reference.

The last three recommendations are design suggestions
for introductory courses that use DrRacket to help students
with error messages, so in the interest of space, we will not
be covering them. As of the writing of the recommendations,
the authors had not implemented these suggestions.

4.2 Syntax error message enhancement and re-
sults

Language syntax is often one of the first difficulties a stu-
dent experiences when learning programming [1]. Because
of this, introductory students may see many syntax errors
while learning the syntax of a language. Denny et al. found
that “syntax errors can be a significant barrier to student
success” and thus propose to improve the existing error mes-

sages that deal with syntactical issues in a Java-based de-
velopment environment for introductory programmers [1].

Denny et al. decided to implement the enhanced error
message system through CodeWrite, a web-based tool for
students to complete various Java exercises. Code is written
directly in the browser and the students need to write only
the body of a method, as the header of the method is always
provided. In order to create the enhanced feedback, the au-
thors began by examining student submissions in CodeWrite
and found the errors that had ambiguous compiler error mes-
sages. They achieved this by performing an analysis of the
code and used regular expressions to match commonly oc-
curring patterns of code that caused errors and extracting
the line containing the error. Denny et al. then catego-
rized the error messages according to error type by building
a program called a recognizer that would parse source code
and raw compiler error messages. Once the original error is
extracted, the authors highlight the line and insert their en-
hanced error message. The enhanced error messages contain
the line number of the offending line of code and a detailed
explanation of the error. They also show an example of in-
correct code and correct code of the corresponding syntax
error with an explanation. Figure 3 shows an example of an
enhanced error message, modified from [1] for readability.
This message was produced from the following erroneous
code fragment:

if (score < 0) || (score > 100)

Syntax error on token "||", if expected

This statement is syntactically incorrect because the if

statement is missing surrounding parenthesis. The corrected
statement is in the ”Correct Code” block in figure 3.

The authors were interested in helping students improve
their debugging skills [1]. After creating these enhanced
error messages, the authors wanted to examine whether they
had an impact on:

• The number of non-compiling submissions made while
attempting an exercise.

• The total number of non-compiling submissions out of
the total number of submissions.

• The number of attempts needed to resolve the most
common syntax errors students typically encounter.

Denny et al. had students in a summer course randomly
put in a control group that received the original error mes-
sage or the intervention that received their new error mes-
sages and submit their code in CodeWrite, where the au-
thors could compare the submissions of the same exercise of
each group. Unfortunately, after testing whether their en-
hanced error messages had an impact on the above items,
they found that their new feedback had no significant differ-
ences between the groups.

Denny et al. measured the effectiveness by comparing
the attempts of students submissions, specifically looking
for syntax errors. Denny et al. ran a t-test to see if their
program would reduce the number of non-compiling sub-
missions while attempting an exercise. They found for each
problem a p-value > 0.05, which means there were no sig-
nificant differences between the groups. Denny et al. found
similar results for whether their program would reduce the
total number of non-compiling submissions. The t-test gave

5

Schliep: Usability of Error Messages for Introductory Students

Published by University of Minnesota Morris Digital Well, 2015

It appears that there is an error in the condition below:

if (score < 0) || (score > 100)

Remember that the condition for an if statement must be surrounded by opening and closing parentheses:

if (condition)

This is true even if the condition consists of more than one boolean expression combined with logical operators like && or ||.

int a = 6;
double x = 9.4;

if (x > 10) && (a == 0) {
return true;

}

int a = 6;
double x = 9.4;

if ((x > 10) && (a == 0)) {
return true;

}

The condition of an if statement needs to be enclosed in parentheses.
Even if the condition is made up of the combination of other conditions,
the entire thing still needs to be wrapped in parenthesesExample

Incorrect Code Correct Code Explanation

Figure 3: Example of an enhanced syntax error message

a p-value = 0.9471, showing non-significance. Finally, they
tested whether their program reduced the number of at-
tempts needed to resolve the most common types of errors
(variable undefined, type error, missing semicolon). Again,
they found for each case, the p-value was large and thus
their program had no significant effect.

Denny et al. suggested numerous possibilities for why
their enhanced feedback system was not effective on helping
introductory students improve their debugging skills. For
example, they thought that students did not put more at-
tention into the additional information the authors placed
in the error messages. The authors hope to apply additional
research regarding their enhanced errors to further exam-
ine why they were not any more helpful than the original
messages [1].

5. CONCLUSIONS AND FUTURE WORK
In this paper, we discussed studies conducted on error

messages in DrRacket and compiler error messages and how
well introductory students can use them for debugging. The
research on DrRacket error messages found that students
have difficulties with understanding error messages on un-
familiar concepts. However, some errors in DrRacket incor-
rectly report the problem to the students and thus there
is room for improvement. The analysis on compiler error
messages deduced that compiler messages are generally un-
usable for introductory programmers. However, there is re-
search being done on error message usability and methods
attempting to improve them are being developed.

We discussed a set of recommendations on designing error
messages toward introductory students. We also discussed a
system of enhanced error messages for syntactical issues, but
was ineffective at being more helpful than the original mes-
sages. Marceau et al. created a series of recommendations
that have been implemented in How to Design Programs li-
braries for DrRacket. How to Design Programs, or HtDP, is
a library that offers the recommendations for error messages
from Marceau et al.’s research [6].

Traver noted in his research on compiler errors that some
approaches have been made in an attempt to enable these
messages to better communicate the problem to the pro-
grammer, such as Denny et al.’s syntax error enhancement,
but“the problem is far from being properly solved”[7]. User-
friendly error messages are important to ease new students
into learning a programming language. Thus, making sure
the messages offer beginner-friendly features, such as famil-

iar vocabulary or showing hints, is imperative in error mes-
sage design.

6. ACKNOWLEDGEMENTS
I would like to thank my advisor, Elena Machkasova, for

the help and feedback she provided for me while I was re-
searching this topic. I would also like to thank Stephen
Adams and Jim Hall for providing their input and feedback
on this research.

7. REFERENCES
[1] Denny, P., Luxton-Reilly, A., and Carpenter, D.

Enhancing syntax error messages appears ineffectual.
In Proceedings of the 2014 Conference on Innovation
& Technology in Computer Science Education
(New York, NY, USA, 2014), ITiCSE ’14, ACM,
pp. 273–278.

[2] Isa, B. S., Boyle, J. M., Neal, A. S., and Simons,
R. M. A methodology for objectively evaluating error
messages. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (New York, NY,
USA, 1983), CHI ’83, ACM, pp. 68–71.

[3] Kummerfeld, S. K., and Kay, J. The neglected
battle fields of syntax errors. In Proceedings of the Fifth
Australasian Conference on Computing Education -
Volume 20 (Darlinghurst, Australia, Australia, 2003),
ACE ’03, Australian Computer Society, Inc.,
pp. 105–111.

[4] Marceau, G., Fisler, K., and Krishnamurthi, S.
Measuring the effectiveness of error messages designed
for novice programmers. In Proceedings of the 42Nd
ACM Technical Symposium on Computer Science
Education (New York, NY, USA, 2011), SIGCSE ’11,
ACM, pp. 499–504.

[5] Marceau, G., Fisler, K., and Krishnamurthi, S.
Mind your language: On novices’ interactions with
error messages. In Proceedings of the 10th SIGPLAN
Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (New York,
NY, USA, 2011), Onward! 2011, ACM, pp. 3–18.

[6] Marceau, G., Fisler, K., and Krishnamurthi, S.
Implementing htdp teachpacks, libraries, and
customized teaching languages, March 2015.

[7] Traver, V. J. On compiler error messages: What they
say and what they mean. In Advances in
Human-Computer Interaction (2010).

6

Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal, Vol. 2 [2015], Iss. 2, Art. 5

http://digitalcommons.morris.umn.edu/horizons/vol2/iss2/5

	Scholarly Horizons: University of Minnesota, Morris Undergraduate Journal
	2015

	Usability of Error Messages for Introductory Students
	Paul A. Schliep
	Recommended Citation

	tmp.1441224672.pdf.RRXL2

