2,366 research outputs found

    The unusual volatile composition of the Halley-type comet 8P/Tuttle: Addressing the existence of an Inner Oort Cloud

    Full text link
    We measured organic volatiles (CH4, CH3OH, C2H6, H2CO), CO, and water in comet 8P/Tuttle, a comet from the Oort cloud reservoir now in a short-period Halley-type orbit. We compare its composition with two other comets in Halley-type orbits, and with comets of the "organics-normal" and "organics-depleted" classes. Chemical gradients are expected in the comet-forming region of the proto-planetary disk, and an individual comet should reflect its specific heritage. If Halley-type comets came from the inner Oort cloud as proposed, we see no common characteristics that could distinguish such comets from those that were stored in the outer Oort cloud.Comment: 14 pages, including 1 figure and 2 Table

    Manipulation of Ag nanoparticles utilizing noncontact atomic force microscopy

    Get PDF
    We have developed a scheme to manipulate metallic aerosol particles on silicon dioxide substrates using an atomic force microscope. The method utilizes the noncontact mode both for locating and moving nanoparticles of size 10–100 nm. The main advantage of our technique is the possibility of “seeing” the moving particle in real time. Our method avoids well sticking problems that typically hamper the manipulation in the contact mode.Peer reviewe

    Приложение для оценки отклонения результатов ручной и автоматической сегментации цифровых изображений

    Get PDF
    Разработка приложения, выполняющего сегментацию изображений, а также позволяющего выполнить количественную оценку отклонения результатов ручной и автоматической сегментации цифровых изображений.Developing an application that performs the segmentation of images and allows you to perform a quantitative assessment of the deviation of the results of manual and automatic segmentation of digital images

    Dust observations of Comet 9P/Tempel 1 at the time of the Deep Impact

    Full text link
    On 4 July 2005 at 05:52 UT, the impactor of NASA's Deep Impact (DI) mission crashed into comet 9P/Tempel 1 with a velocity of about 10 km/s. The material ejected by the impact expanded into the normal coma, produced by ordinary cometary activity. The characteristics of the non-impact coma and cloud produced by the impact were studied by observations in the visible wavelengths and in the near-IR. The scattering characteristics of the "normal" coma of solid particles were studied by comparing images in various spectral regions, from the UV to the near-IR. For the non-impact coma, a proxy of the dust production has been measured in various spectral regions. The presence of sublimating grains has been detected. Their lifetime was found to be about 11 hours. Regarding the cloud produced by the impact, the total geometric cross section multiplied by the albedo was measured as a function of the color and time. The projected velocity appeared to obey a Gaussian distribution with the average velocity of the order of 115 m/s. By comparing the observations taken about 3 hours after the impact, we have found a strong decrease in the cross section in J filter, while that in Ks remained almost constant. This is interpreted as the result of sublimation of grains dominated by particles of sizes of the order of some microns.Comment: Accepted by A&

    Оценка конкурентоспособности организации

    Get PDF
    Цель работы: обозначить пути повышения конкурентоспособности предприятия-производителя электротехнической продукции ООО «СИБАР ГРУПП» В процессе исследования проводились: анализ финансово-хозяйственной деятельности, анализ ассортимента предприятия, выделены основные финансовые показатели деятельности предприятия, проведен анализ конкурентной среды предприятия В результате исследования выявлены слабые места предприятия, рекомендованы меры по повышению конкурентоспособности предприятия на рынке электротехнического оборудования Экономическая эффективность/значимость работы: исполнение рекомендаций для повышения конкурентоспособности В будущем планируется: дальнейшее повышение конкурентоспособности.A research object is LTD "SIBAR GROUP" plant of electrical engineering equipment. Aim of work : to designate the ways of increase of competitiveness of enterprise on the example of enterprise LTD "SIBAR GROUP". In the process of research conducted: analysis of financially-economic activity, analysis of assortment of enterprise, basic financial performance of enterprise indicators are distinguished, the analysis of competition environment of enterprise is conducted. As a result of research the weak points of enterprise are educed, measures are recommended on their strengthening. Basic structural, technological and operating descriptions. Economic efficiency/ is meaningfulness of work : execution of recommendations for the increase of competitiveness

    Models of the SL9 Impacts II. Radiative-hydrodynamic Modeling of the Plume Splashback

    Full text link
    We model the plume "splashback" phase of the SL9 collisions with Jupiter using the ZEUS-3D hydrodynamic code. We modified the Zeus code to include gray radiative transport, and we present validation tests. We couple the infalling mass and momentum fluxes of SL9 plume material (from paper I) to a jovian atmospheric model. A strong and complex shock structure results. The modeled shock temperatures agree well with observations, and the structure and evolution of the modeled shocks account for the appearance of high excitation molecular line emission after the peak of the continuum light curve. The splashback region cools by radial expansion as well as by radiation. The morphology of our synthetic continuum light curves agree with observations over a broad wavelength range (0.9 to 12 microns). A feature of our ballistic plume is a shell of mass at the highest velocities, which we term the "vanguard". Portions of the vanguard ejected on shallow trajectories produce a lateral shock front, whose initial expansion accounts for the "third precursors" seen in the 2-micron light curves of the larger impacts, and for hot methane emission at early times. Continued propagation of this lateral shock approximately reproduces the radii, propagation speed, and centroid positions of the large rings observed at 3-4 microns by McGregor et al. The portion of the vanguard ejected closer to the vertical falls back with high z-component velocities just after maximum light, producing CO emission and the "flare" seen at 0.9 microns. The model also produces secondary maxima ("bounces") whose amplitudes and periods are in agreement with observations.Comment: 13 pages, 9 figures (figs 3 and 4 in color), accepted for Ap.J. latex, version including full figures at: http://oobleck.tn.cornell.edu/jh/ast/papers/slplume2-20.ps.g

    The First Magnetic Fields

    Full text link
    We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark-hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars is discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early generation of stars or active galactic nuclei can be dispersed into the intergalactic medium.Comment: Accepted for publication in Space Science Reviews. Pdf can be also downloaded from http://canopus.cnu.ac.kr/ryu/cosmic-mag1.pd

    The first spectral line surveys searching for signals from the Dark Ages

    Get PDF
    Our aim is to observationally investigate the cosmic Dark Ages in order to constrain star and structure formation models, as well as the chemical evolution in the early Universe. Spectral lines from atoms and molecules in primordial perturbations at high redshifts can give information about the conditions in the early universe before and during the formation of the first stars in addition to the epoch of reionisation. The lines may arise from moving primordial perturbations before the formation of the first stars (resonant scattering lines), or could be thermal absorption or emission lines at lower redshifts. The difficulties in these searches are that the source redshift and evolutionary state, as well as molecular species and transition are unknown, which implies that an observed line can fall within a wide range of frequencies. The lines are also expected to be very weak. Observations from space have the advantages of stability and the lack of atmospheric features which is important in such observations. We have therefore, as a first step in our searches, used the Odin satellite to perform two sets of spectral line surveys towards several positions. The first survey covered the band 547-578 GHz towards two positions, and the second one covered the bands 542.0-547.5 GHz and 486.5-492.0 GHz towards six positions selected to test different sizes of the primordial clouds. Two deep searches centred at 543.250 and 543.100 GHz with 1 GHz bandwidth were also performed towards one position. The two lowest rotational transitions of H2 will be redshifted to these frequencies from z~20-30, which is the predicted epoch of the first star formation. No lines are detected at an rms level of 14-90 and 5-35 mK for the two surveys, respectively, and 2-7 mK in the deep searches with a channel spacing of 1-16 MHz. The broad bandwidth covered allows a wide range of redshifts to be explored for a number of atomic and molecular species and transitions. From the theoretical side, our sensitivity analysis show that the largest possible amplitudes of the resonant lines are about 1 mK at frequencies <200 GHz, and a few micro K around 500-600 GHz, assuming optically thick lines and no beam-dilution. However, if existing, thermal absorption lines have the potential to be orders of magnitude stronger than the resonant lines. We make a simple estimation of the sizes and masses of the primordial perturbations at their turn-around epochs, which previously has been identified as the most favourable epoch for a detection. This work may be considered as an important pilot study for our forthcoming observations with the Herschel Space Observatory.Comment: 15 pages, 9 figures, 3 on-line pages. Accepted for publication in Astronomy & Astrophysics 8 March 2010
    corecore