770 research outputs found

    Beam Misalignments and Fluid Velocities in Laser-Induced Thermal Acoustics

    Get PDF
    Beam misalignments and bulk fluid velocities can influence the time history and intensity of laser-induced thermal acoustics (LITA) signals. A closed-form analytic expression for LITA signals incorporating these effects is derived, allowing the magnitude of beam misalignment and velocity to be inferred from the signal shape. It is demonstrated how instantaneous, nonintrusive, and remote measurement of sound speed and velocity (Mach number) can be inferred simultaneously from homodyne-detected LITA signals. The effects of different forms of beam misalignment are explored experimentally and compared with theory, with good agreement, allowing the amount of misalignment to be measured from the LITA signal. This capability could be used to correct experimental misalignments and account for the effects of misalignment in other LITA measurements. It is shown that small beam misalignments have no influence on the accuracy or repeatability of sound speed measurements with LITA

    Accuracy and uncertainty of single-shot, nonresonant laser-induced thermal acoustics

    Get PDF
    We study the accuracy and uncertainty of single-shot nonresonant laser-induced thermal acoustics measurements of the speed of sound and the thermal diffusivity in unseeded atmospheric air from electrostrictive gratings as a function of the laser power settings. For low pump energies, the measured speed of sound is too low, which is due to the influence of noise on the numerical data analysis scheme. For pump energies comparable to and higher than the breakdown energy of the gas, the measured speed of sound is too high. This is an effect of leaving the acoustic limit, and instead creating finite-amplitude density perturbations. The measured thermal diffusivity is too large for high noise levels but it decreases below the predicted value for high pump energies. The pump energy where the error is minimal coincides for the speed of sound and for the thermal diffusivity measurements. The errors at this minimum are 0.03% and 1%, respectively. The uncertainties for the speed of sound and the thermal diffusivity decrease monotonically with signal intensity to 0.25% and 5%, respectively

    The Abandoned Side of the Internet: Hijacking Internet Resources When Domain Names Expire

    Full text link
    The vulnerability of the Internet has been demonstrated by prominent IP prefix hijacking events. Major outages such as the China Telecom incident in 2010 stimulate speculations about malicious intentions behind such anomalies. Surprisingly, almost all discussions in the current literature assume that hijacking incidents are enabled by the lack of security mechanisms in the inter-domain routing protocol BGP. In this paper, we discuss an attacker model that accounts for the hijacking of network ownership information stored in Regional Internet Registry (RIR) databases. We show that such threats emerge from abandoned Internet resources (e.g., IP address blocks, AS numbers). When DNS names expire, attackers gain the opportunity to take resource ownership by re-registering domain names that are referenced by corresponding RIR database objects. We argue that this kind of attack is more attractive than conventional hijacking, since the attacker can act in full anonymity on behalf of a victim. Despite corresponding incidents have been observed in the past, current detection techniques are not qualified to deal with these attacks. We show that they are feasible with very little effort, and analyze the risk potential of abandoned Internet resources for the European service region: our findings reveal that currently 73 /24 IP prefixes and 7 ASes are vulnerable to be stealthily abused. We discuss countermeasures and outline research directions towards preventive solutions.Comment: Final version for TMA 201

    CAIR: Using Formal Languages to Study Routing, Leaking, and Interception in BGP

    Full text link
    The Internet routing protocol BGP expresses topological reachability and policy-based decisions simultaneously in path vectors. A complete view on the Internet backbone routing is given by the collection of all valid routes, which is infeasible to obtain due to information hiding of BGP, the lack of omnipresent collection points, and data complexity. Commonly, graph-based data models are used to represent the Internet topology from a given set of BGP routing tables but fall short of explaining policy contexts. As a consequence, routing anomalies such as route leaks and interception attacks cannot be explained with graphs. In this paper, we use formal languages to represent the global routing system in a rigorous model. Our CAIR framework translates BGP announcements into a finite route language that allows for the incremental construction of minimal route automata. CAIR preserves route diversity, is highly efficient, and well-suited to monitor BGP path changes in real-time. We formally derive implementable search patterns for route leaks and interception attacks. In contrast to the state-of-the-art, we can detect these incidents. In practical experiments, we analyze public BGP data over the last seven years

    Non-contact boundary layer profiler using low-coherence self-referencing velocimetry

    Get PDF
    A spatially self-referencing velocimetry system based on low-coherence interferometry has been developed. The measurement technique is contactless and relies on the interference between back-reflected light from an arbitrary reference surface and seeding particles in the flow. The measurement location and the flow velocity are measured relative to the reference surface's location and velocity, respectively. Scanning of the measurement location along the beam direction does not require mechanical movement of the sensor head. The reference surface (which can move or vibrate relative to the sensor head) can be either an external object or the surface of a body over which measurements are to be performed. The absolute spatial accuracy and the spatial resolution only depend on the coherence length of the light source (tens of microns for a superluminescent diode). The prototype is an all-fiber assembly. An optical fiber of arbitrary length connects the self-contained optical and electronics setup to the sensor head. Proof-of-principle measurements in water (Taylor-Couette flow) and in air (Blasius boundary layer) are reported in this pape

    Atomistic phenomena in dense fluid shock waves

    Get PDF
    The shock structure problem is one of the classical problems of fluid mechanics and at least for non-reacting dilute gases it has been considered essentially solved. Here we present a few recent findings, to show that this is not the case. There are still new physical effects to be discovered provided that the numerical technique is general enough to not rule them out a priori. While the results have been obtained for dense fluids, some of the effects might also be observable for shocks in dilute gase

    Flow in near-critical fluids induced by shock and expansion waves

    Get PDF
    Abstract.: Unsteady shock and expansion waves are proposed as means to produce flows near the liquid-vapor critical-point without imposing pressure gradients. By choosing appropriate initial conditions and wave speeds, near-critical post-wave conditions can be obtained. The post-shock conditions are shown to be stable with respect to perturbations in the pre-shock conditions. The initial conditions are sufficiently far from the critical-point to allow fast thermal equilibration, permitting the use of larger fluid volumes. Example calculations for the cases of an impulsively accelerated piston, of a shock tube, and of a Ludwieg-like tube are presented yielding flows up to 20 m/s in sulfur hexafluoride (SF6), where the limit is due to the region of validity of the equation of state. The proposed setup also allows one to study shock wave propagation into near-critical fluid

    Electron (hole) paramagnetic resonance of spherical CdSe nanocrystals

    Full text link
    A new mechanism of electron paramagnetic resonance in spherical zinc-blende semiconductor nanocrystals, based on the extended orbital motion of electrons in the entire nanocrystal, is presented. Quantum confinement plays a crucial role in making the resonance signal observable. The mechanism remains operative in nanocrystals with uniaxially distorted shape. A theoretical model based on the proposed mechanism is in good quantitative agreement with unusual ODMR spectra observed in nearly spherical CdSe nanocrystals.Comment: 4 pages, 2 figure

    Pragmatisch-kommunikative Störungen – Herausforderungen für Sprachheilpädagogik und Sprachtherapie in Schule und Berufsbildung

    Full text link
    Die Frage nach der Partizipation/Teilhabe von Kindern und Jugendlichen mit sprachlichen Beeinträchtigungen ist häufig auch mit ihren pragmatisch-kommunikativen Fähigkeiten verknüpft. Dabei beinhaltet ein kompetentes Sprachhandeln unterschiedliche Teilfähigkeiten und Kompetenzen, welche sprachliche, aber auch soziale, kognitive, kulturelle und emotionale Aspekte beinhalten. Dieses interdisziplinäre Themenfeld verlangt nach einer multiprofessionellen Unterstützung von Kindern und Jugendlichen mit eingeschränkten pragmatisch-kommunikativen Fähigkeiten. (DIPF/Orig.
    corecore