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Abstract The shock structure problem is one of the classi-
cal problems of fluid mechanics and at least for non-reacting
dilute gases it has been considered essentially solved. Here
we present a few recent findings, to show that this is not the
case. There are still new physical effects to be discovered pro-
vided that the numerical technique is general enough to not
rule them out a priori. While the results have been obtained
for dense fluids, some of the effects might also be observable
for shocks in dilute gases.
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chaos · Shock thickness · Asymmetry factor
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1 Introduction

The shock structure problem belongs to the classical prob-
lems in fluid mechanics. Attempts to derive the shock thick-
ness trace back well over 100 years [1–3]. The glory days
were probably the 1950s and 1960s when experimental facil-
ities and measurement techniques became available, which
allowed the experimental validation of the various theories
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and results that had been proposed and obtained by then.
A second wave of interest started in the 1960s when compu-
tational simulations on an atomistic level became feasible.
The breakthrough development was that of the direct simu-
lation Monte Carlo (DSMC) technique. Bird, who first intro-
duced DSMC [4], was also the first to apply this technique to
the shock wave problem [5]. It was not clear initially whether
the procedure was actually solving the Boltzmann equation
until Bird himself [6] proved this. DSMC was applied numer-
ous times to the shock structure problem in the following
years and today is the work horse in rarefied gas dynamics.

Molecular dynamics (MD) is conceptually much simpler
than DSMC, and was consequently proposed before DSMC
[7]. But because it is computationally much more expensive,
especially at low densities, the first shock wave simulations
lagged those for DSMC. Hoover [8] and Holian et al. [9] can
be seen as pioneers in applying MD to the shock structure
problem.

Because of the incredible wealth of theoretical, experi-
mental, and numerical work in existence on the subject, it is
impossible to give a fair and balanced overview here. Suf-
fice it to say that a huge body of knowledge exists, but that
the focus in the meantime has shifted away from the “classi-
cal” shock structure problem. Instead, shocks in chemically
reacting fluids, shocks in solids with grain boundaries, etc.
have taken center-stage. This is due to the fact that for all
practical purposes the “classical” shock structure problem is
considered solved — not in the sense of having a closed-form
analytical solution (should one exist), but at least numeri-
cally. This is true in as far as the Boltzmann equation now
can be solved to arbitrary accuracy. One is content to know
that the existing macroscopic governing equations are not
applicable for this problem, but since one can use DSMC
in those cases or in those regions, a further advancement
of the theory seems less important. In any case, agreement
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between simulations and experiments is very good, and any
remaining discrepancies are not significant for engineering
purposes.

Then there are a few impediments to someone interested
in this problem: the high entry barrier to the field (like in
turbulence modeling, but in contrast to those in an emerging
specialty), negligible funding for such fundamental research,
and the prospect of only being able to make minute quan-
titative improvements to existing formulations. In fact, the
original purpose of the work presented here was to pro-
vide validation data for other, more efficient numerical tech-
niques. It was assumed that all physical effects relevant to the
shock wave problem had been found and reported on. The
data analysis showing some unanticipated effects (in partic-
ular, Sects. 4–6) were primarily meant to verify the proper
behavior of the code and convergence of the simulations. The
objective of this paper is then less to document in detail each
one of the findings (yet they are described with some back-
ground for their understanding), but to show that even clas-
sical problems might not be as fully explored as they appear.

Some of the results have been published in more detail
elsewhere and the reader is kindly asked to consult the ref-
erences for a more complete description, theoretical back-
ground, discussion of results etc. Section 2 introduces the
numerical technique and the particular setup used. Section 3
gives a brief review of the macroscopic shock structure. Each
of Sects. 4 through 7 will then discuss one phenomenon
which has only recently come to light (see Refs. [10–12],
respectively, for more details). These are all aspect of a
broader research project carried out over the last several years
at ETH Zurich [13]. Here we only report on some of the
results for the shock wave in dense nitrogen, but the same
results (where applicable) have been observed in argon.

2 Numerical setup

Like DSMC, MD is particle-based and does not directly solve
a macroscopic governing equation (e.g. Navier–Stokes). But
unlike DSMC, MD simulates the movement of each real par-
ticle, i.e., there is no distinction between real and computa-
tional particles.

While DSMC can be shown to solve the Boltzmann equa-
tion, MD solves no macro- or microscopic governing equa-
tion for a fluid; only the Newtonian equations of motion are
solved. It hence does not require any a priori assumptions or
knowledge about the fluid, e.g. an equation of state and the
transport coefficients (as required by macroscopic governing
equations) or a collision model (as required by DSMC).

The forces between pairs of particles are calculated based
on some potential function, the choice of which is the only
form of modeling required. These range from hard-sphere
models over generic potentials to many-parameter functions,
which reproduce the thermodynamic and physical properties

of fluids and solids quantitatively over a wide range of
densities and temperatures. The computational cost of calcu-
lating forces between all possible particle pairs in the domain
scales as N 2, but this growth can be made linear by a finite
cut-off radius beyond which molecules are not considered
for the force calculation.

MD was first proposed by Alder and Wainwright in the
1950s [7]. It does not make the assumptions underlying the
Boltzmann equation and is thus well-suited even for high
densities and can even be used for simulations of solids. In
fact, MD is prohibitively expensive for low densities. Hoover
[8] and Holian et al. [9], for example, use MD to simulate
shock waves in dense monatomic gases. They find that the
discrepancies between the Navier-Stokes and the MD results
is smaller than for dilute gases. Tsai and Trevino [14] perform
MD simulations of shock waves in liquids.

MD has been applied repeatedly for this fluid mechanical
problem (e.g. [9,15,16]). These works focus on the steady-
state profile. A setup similar to the one used here, namely the
creation of the shock by an impulsively accelerated piston,
has also been studied in Refs. [17–19]. These authors obtain
temporally resolved data for the formation of the steady state
profile from an initially quiescent fluid. All of the above only
consider monatomic gases, i.e., do not consider rotational
degrees of freedom. Steady-state profiles for a shock in dilute
nitrogen has been obtained using a hybrid method (MD +
direct simulation Monte Carlo) by Tokumaso and Matsum-
oto [20]. In the present work, for the first time, the shock
structure of a diatomic dense fluid is considered.

All results reported in the subsequent section are based on
the same set of molecular dynamics simulations. The numer-
ical setup is the same discussed in detail in Ref. [11]. Only the
most essential parameters are reproduced here. The molecu-
lar dynamics code used is a modified version of Moldy [21].
The computational domain is a cuboid with dimensions Lx ×
L y × Lz = 252×237.9×237.9Å3, where a layer of 15.86Å
thickness on either side (in x–direction) is occupied by a
piston and by a stationary wall.

100,000 nitrogen molecules are randomly distributed
within the fluid portion of the domain and given random
initial velocities and rotation rates drawn from a Maxwell-
Boltzmann distribution. The rigid nitrogen molecule is mod-
eled by a two-center Lennard-Jones (6,12) potential with
the parameters as given in Ref. [22], but without the five
point-charges. The mean distance between molecules is δ =
n−1/3 = 5Å initially, where n denotes the number density.
The mean free path (based on its dilute gas definition and
using 2σL J as diameter) is O(1Å).

The system is equilibrated for 2 ps, where the molecu-
lar velocities and rotation rates are rescaled periodically to
correspond to the desired initial temperature of 300 K. The
shock wave is created by impulsively accelerating the left
wall (piston) to a velocity of u p = 1, 000 m/s. The system
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Atomistic phenomena in dense fluid shock waves 399

state is saved every 0.05 ps. 10 ensembles with perturbed
initial conditions are simulated. The averaged shock structure
is obtained by averaging over all ensembles and over all time
steps where the shock wave is at least 50Å from either wall.

3 Macroscopic shock structure

The shock thickness � based on the maximum density gra-
dient is defined as

� = �ρ

dρ
dx

∣
∣
∣
max

, (1)

where �ρ denotes the density jump across the shock. The
denominator is the largest spatial density gradient within the
shock waves. � thus represents the distance over which the
maximum gradient would have to be maintained in order to
achieve the same density jump.

For dilute gases � tends to infinity for weak shocks, but
is usually in the range between 2 to 4 mean-free paths for
M > 1.5 with a slightly increasing tendency for large Mach
numbers [23]. For a given Mach number, the shock thick-
ness increases slightly (relative to the mean-free path) with
the density [24].

Over this short distance, the fluid state changes signifi-
cantly so that it is immediately obvious that the continuum
hypothesis is not applicable within the shock. Figure 1 shows
a particular example for a shock in dense nitrogen. Yet the
dilute shock structure is very similar when properly scaling
the horizontal axis. All quantities have been nondimension-
alized by the pre- and post-shock properties,

q̃ = q − q1

q2 − q1
, (2)

where the subscripts 1 and 2 denote the pre– and post-shock
state, respectively. q could refer to the density, velocity, tem-
perature, etc. Hence, zero corresponds to the pre-shock state
and unity is the post-shock value. The origin of the spatial
coordinate system has been chosen such that x = 0 corre-
sponds to the location where ρ̃ = 0.5.

The breakdown of the local thermodynamic equilibrium
(LTE) hypothesis is evident from the fact that the equi–parti-
tion of energy theorem is violated. It states that the energy is
divided equally between all available degrees of freedom (our
simulations neglect quantum mechanical effects). This would
require that the rotational temperature is equal to the trans-
lational temperature, which is not the case in a shock wave.
Furthermore, Fig. 1 also shows that not even the three trans-
lational degrees of freedom are equally excited: The transla-
tional temperature based solely on the shock-normal velocity
component (T̃x ) deviates from that based on the shock-paral-
lel motion (T̃y). Note in particular the well-known tempera-
ture overshoot of the shock–normal temperature component,
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Fig. 1 Shock structure (M = 3.56) in dense nitrogen (T1 = 300 K,
ρ1 = 370.9 kg/m3, T2 = 978 K, ρ2 = 741 kg/m3, �u = 985 m/s). The
velocity profile (not shown for clarity) is similar to that of T̃y

whose magnitude depends on the Mach number and the ratio
of specific heats. This overshoot was first predicted theoret-
ically [25,26], but later confirmed experimentally (Ref. [27]
is a more recent example).

Our results for dense fluids indicate that the asymmetry
parameter [28] (Ref. [29] uses a slightly different definition)

Q =
∫ ∞

0 (ρ − ρ1)dx
∫ 0
−∞(ρ2 − ρ)dx

. (3)

is less than unity whereas it is found to be greater than unity
in dilute gases for comparable Mach numbers [28,29].

Not surprisingly, the Navier-Stokes equations do not even
reproduce the shock thickness well for Ms > 2 [30]. But
there certainly exist more refined governing equations, which
yield satisfactory agreement, at least for dilute gases. But
instead of dwelling on subtle quantitative discrepancies
between various techniques, Sects. 4 through 7 will address
features, which none of the existing techniques is able to
capture at all.

4 Anisotropic molecular orientations

Intuitively, due to the frequent collisions, one would assume
that the angular orientation of the molecules is random. In
fact, in the context of dilute fluids, this follows almost directly:
In dilute fluids, the distance between molecules is much
larger than the size of a molecule. The molecules hence only
interact during collision events, which are very short com-
pared to the time spent between collisions. The orientations
of colliding molecules are randomized by the collision. But
since there are no interactions between the collision events,
there is no mechanism which could produce an anisotropic
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Fig. 2 Orientation angle
distributions across shock wave;
a, left population enhancement
of orientation angles relative to
a purely random distribution;
b, right the same, but for the
orientation of the angular
momentum vector. Flow is from
le f t to right . The horizontal
scale has been
nondimensionalized by the
shock wave thickness
� = 7.5Å. The shock
conditions are the same as in 1
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orientation of the molecules. For dense fluids, the situation
is different. The trajectory of a molecule is not governed by
isolated binary collision events, but rather by a continuous
interaction with multiple neighboring molecules. If their dis-
tribution is inhomogeneous (e.g. by means of a strong density
gradient), then this could produce an anisotropy.

Molecules near a phase boundary have an alignment ten-
dency, e.g. water molecules very close to the surface [31],
polar [32] and non-polar [33] molecules at the water/air inter-
face in a Langmuir monolayer, or surfactant molecules in a
liquid colloid (micelle) [34]. The alignment of liquid crys-
tals in the nematic phase can be controlled by applying an
electric field [35].

Subsequently, only homo–nuclear diatomic molecules are
considered, but the terminology is easily extended to a more
general case. Let the orientation angle θ be the angle between
the x-axis and the inter-nuclear axis. Because the nitrogen
molecule is symmetric, θ is mapped to the range 0 · · ·π/2
without loss of generality. θ = 0 then means that the mole-
cule is aligned along the shock normal vector, while θ = π/2
for a molecule, whose axis is parallel to the plane of the shock
wave. Similarly, φ (0 · · · π/2) denotes the angle between the
x-axis and the angular momentum vector (i.e., the instan-
taneous “rotation axis”). For a linear molecule, the angular
momentum has to be perpendicular to the molecule’s axis.
This represents the constraint

0 ≤ π/2 − φ ≤ θ. (4)

Purely random orientations of the molecules and the
axes of rotation would yield distributions fθ = sin θ and

fφ = sin φ, merely reflecting the different solid angles. Devi-
ations are then evident by non-zero values of f̃θ = ( fθ −
sin θ)/ sin θ and f̃φ = ( fφ − sin φ)/ sin φ. These are the rel-
ative over- or underpopulations of a certain value for θ or φ.

Figure 2a and b shows these deviations across the shock
wave. The horizontal axis is the shock-normal coordinate,
the vertical axes represent θ and φ. The color coding refers
to the over- (red) or under–population (blue) as given by f̃θ
and f̃φ .

It can be seen that θ and φ are distributed randomly upstr-
eam and downstream of the shock. Within the shock wave
(|x/�| ≤ 1), large θ are overpopulated, while small θ are
underpopulated. The trend is weak (at least for these fluid
conditions), but clearly visible above the background noise.
The opposite behavior is observed for the angular momenta.
Within the shock, small values of φ are overpopulated, large
φ are underpopulated. But the effect for the angular momen-
tum orientation is weaker.

The anisotropy of φ requires an opposite (in sign but not
in magnitude) anisotropy of φ, and vice versa: the overpop-
ulation of small θ does not mean that molecules “freeze”
in a particular orientation. On the contrary, the rotational
temperature (and thus the mean rotation rate) increases con-
tinuously across the shock wave. Consider the limiting case
where each molecule has θ = 0. Then, because of Eq. 4, each
molecule would also necessarily have φ = π/2. But even for
a smaller anisotropy of θ , Eq. 4 leads to an opposite effect for
φ. This argument implies a cause and effect relationship, i.e.,
that the anisotropy of θ causes the anisotropy of φ. This is not
the case. In reality both effects are simply coupled through
Eq. 4.
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Atomistic phenomena in dense fluid shock waves 401

But one might wonder why f̃θ deviates further from zero
than f̃φ . This can be understood by considering that the effect
is due to the interaction with inhomogeneously distributed
molecules in the vicinity. It is thus a function of the loca-
tion of the two nitrogen atoms (i.e., the orientation), but not
on their velocity vector (i.e., the angular momentum vector).
The angular momentum only becomes significant because it
determines the location of the atoms subsequently.

We have proposed [10] a nondimensional parameter gov-
erning the magnitude of the anisotropy, which includes the
elongation of the molecule, the magnitude of the density gra-
dient, the density, and the curvature of the potential function
between molecules. Additional simulations with different
flow conditions are required to confirm this scaling.

A posteriori (see Ref. [10] for a proposed mechanism),
it seems obvious that such an alignment effect could (and
should) exist and one wonders why it has not been observed
before. One must note that all of the following conditions
must be met to observe the phenomenon: (a) the molecular
model must be non-spherical; (b) it is a dense gas effect.
Simulations in dilute gases will not produce an alignment;
(c) realistic (i.e., smooth) interaction potentials are required.
Simulations of hard-sphere molecules will not produce an
alignment; (d) the effect is weak. Large sample sizes are
required to observe it above the statistical fluctuations; (e)
one has to look for it.

5 Higher moments of the velocity distribution function

While the previous section addressed a feature which can-
not be captured by present theories, this and the next section
show that (and by how much) the underlying assumptions of
various governing equations are violated. All common mac-
roscopic governing equations of fluid mechanics are derived
from the Boltzmann equation. The Euler and the Navier–
Stokes equations, for example, are the zeroth and first order
series expansions with respect to the Knudsen number
(Chapman–Enskog expansion) [36].

In general, the closure problem consists of expressing the
heat flux and the stress tensor as a function of the other quan-
tities and their derivatives. The fluctuation theorem [37] pro-
vides expressions, which are valid in general, but which can
not be calculated. It can be seen as a microscopic version of
the second law of thermodynamics. The Green–Kubo rela-
tions [38–41] are a simplification of the fluctuation theorem,
but are only valid for fluids close to equilibrium [42]. Also,
they are not applicable for flow simulations. This is, because
they do not provide instantaneous values for the transport
coefficients.

One instead (explicitly or implicitly) makes certain
assumptions about the moments of the velocity distribution
function above some order. The Euler equations, for example,

follow from the Boltzmann equation in the high collision rate
limit. In this limit, the molecular velocities follow an equi-
librium, i.e., Maxwell–Boltzmann distribution, for which all
odd moments are zero. The heat flux is proportional to the
skewness (the third central moment) of the velocity distribu-
tion function. This is responsible for the non–heatconducting
nature of the Euler equations.

The Navier–Stokes equations account for non-zero skew-
ness, but similar assumption for the moments of order four
and up are required in their derivation from the Boltzmann
equation. It has to be said, however, that the Fourier law (of
heat conduction) and Newtonian behavior are a consequence
of the derivation and not an a priori assumption. Higher-
order terms of the Chapman–Enskog series are the Burnett
and super-Burnett equations, for which the closure problem
is shifted to moments of order 5 and 6, respectively [36].

Let �ξ i = (ξ i , ηi , ζ i ) and �ci = (ci
x , ci

y, ci
z) be the location

and the velocity vector of molecule i in the shock-fixed ref-
erence frame, respectively. We define the central moments as
follows:

µ0 = N =
N

∑

i=1

1 µ1,α = �uα = 1

N

N
∑

i=1

�ci
α

µk>2,α = 1

N

N
∑

i=1

(

�ci
α − �uα(ξ i )

)k
(5)

Greek subscripts denote components of vectors or ten-
sors. Roman subscripts indicate the order of the moment.
The moments for k > 2 are tensors, but only the diagonal
elements are considered here. The sum is over all molecules
within a slice |x−ξ i | ≤ δx/2 parallel to the plane of the shock
wave. It can be seen that µ0 (when divided by the volume) is
just the density, and that µ1 is the velocity vector of the fluid.
µ2 and µ3 are proportional to the temperature and heat flux,
respectively. Note that µ2 is a vector, whose elements corre-
spond to the directional temperatures mentioned in Sect. 3.
Likewise, µ3 is a tensor, whereas the heat flux is conven-
tionally assumed to be a vector. This simplification requires
that the local thermodynamic equilibrium assumption holds,
which has already been shown to be violated within a shock.

The third and higher moments are normalized by the
respective power of the standard deviation

√
µ2,α . The fourth

and higher even moments are expressed as excess moments,
i.e., the value of the moment which a Maxwell-Boltzmann
distribution would have is subtracted (µ4,M B = 3, µ6,M B =
15, µ8,M B = 105, µ10,M B = 945). An equilibrium distri-
bution would thus correspond to all excess moments being
zero.

Figure 3 shows the higher central moments of the veloc-
ity distribution function across the shock wave. The even
moments are plotted in Fig. 3a, the odd moments in Fig. 3b.
The solid lines are for the direction along the direction of
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Fig. 3 Even a, left and odd b, right moments of the velocity distribu-
tion function for a shock wave in dense nitrogen. The labels indicate
the order of the moment. The solid lines are for the molecular veloci-
ties in shock-normal direction, the dotted lines for velocities within the

shock plane. The odd moments for the shock–parallel velocities are zero
(within the measurement uncertainty) and are not shown. The curves
are scaled to fit in the same axes. The scaling factors, which have been
applied for each order, are shown in each panel

the main flow (α = x in Eq. 5). The dotted lines are for one
of the in-plane velocity components (α = y or z in Eq. 5).
Upstream and downstream, all excess moments are zero, con-
sistent with a Maxwell-Boltzmann distribution of a fluid in
equilibrium.

The sensitivity to finite sample size effects increases with
the order of the moment. The higher noise levels for the
higher orders are thus expected. It is still curious that the
largest noise-like fluctuations are limited to a section on
the cold side of the shock and are not observed for
the in-plane directions.

The most counter-intuitive feature in Fig. 3a is that the
even moments of order 4 and higher of the velocity distribu-
tion function across the shock wave exhibit a sign reversal.
They are positive on the cold side of the shock, but slightly
negative on the hot side of the shock. This means that the
velocity distribution function changes from having fat tails
to having slim tails, at least with respect to the molecular
velocities along the shock–normal direction. The distribu-
tion function for the in-plane velocity components does not
have a sign reversal. We do not expect that this is a dense gas
effect.

Experimental and numerical data for dilute gases, from
which the higher moments can be extracted, is available
in the literature, but to the authors’ knowledge, the effect
has not been reported previously. The location where the
higher out-of plane moments first deviate from zero does
not depend on the order of the moment, i.e., the trend for
the lower moments that the temperature (second moment)
changes upstream of the flow velocity (first moment) and the
density (zeroth moment) is not continued or it approaches a
limit asymptotically (also see Fig. 1). Consider a collection
of molecules in a volume. When a single very fast molecule
enters the volume, its (relative) influence on the number of
molecules or their mean velocity is small. Its effect is stron-
gest felt for the higher moments, since it is those who capture
the tail behavior of the velocity distribution function.

The peak magnitude of the moments increases with the
order of the moment (note the different scaling of the lines
in Fig. 3). This is significant when considering appropri-
ate closure relations for the atomistic governing equations
when deriving macroscopic governing equations from them.
The influence on the macroscopic quantities will, for most
practical purposes, be negligible because the higher moments
are predominantly affected by the (few) particles in the tails
of the distribution function. The effect could, however, be
large for flows in which high kinetic energy collisions play a
significant role, such as for chemically reacting flows.

6 Long-range two-point velocity correlations

The previous section addresses errors in the step between
Boltzmann equation and a macroscopic governing equation.
Here, we can show that even the assumptions underlying the
Boltzmann equation, are not fully satisfied within a shock
wave. Grad [43] summarizes these assumptions:

1. point molecules; this is intrinsically implied by writing
the distribution function as f = f (�r , . . .).

2. complete collisions; there exists a time interval which is
large compared to the duration of a collision, yet small
compared to the mean time between collisions.

3. slowly varying distribution function; this means that f
does not change significantly over the intermediate time
scale just mentioned, i.e., f ≈ const. over a distance
comparable to the size of a molecule (but not necessarily
over the mean-free path).

4. molecular chaos; the velocities of two molecules with a
distance larger than the range of short-range forces are
uncorrelated.

The first three assumptions are satisfied for a dilute gas,
but not for a dense fluid (or shock therein). The nice property
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of the first three assumptions is that their validity can eas-
ily be assessed a priori. They only require the knowledge
of some length and time scales, which are usually roughly
known. This is not so with the last assumption. It has to be
evaluated a posteriori, which is what is done here. Note that
this evaluation cannot be made after the assumption has been
used in the derivation of the governing equation being solved
(which could yield a circular argument).

Strictly speaking, it will be shown subsequently that the
molecular chaos assumption is violated in a dense fluid
shocks. But in dense fluid shocks, the other assumptions do
not hold anyway. Yet, our results might not be a dense fluid
effect, but might instead be also observable in dilute fluids.
Other examples, where the molecular chaos assumption does
not hold, include fluids near the liquid–vapor critical-point,
where the behavior of the fluid is dominated by long-range
correlations, shear flows [44–46], dissipative gases [47], and
high-energy heavy-ion collisions [48].

Let � be the the kinetic state vector of molecule i ,

� i =
(

 i⊥,  i||,  i
ω

)

≡
(

ci
x ,

√
(

ci
y

)2 + (

ci
z

)2
, | �ωi |

)

. (6)

The first component is simple the shock–normal velocity. The
second component is the in-plane velocity magnitude. This
makes use of the fact that the in-plane directions are inter-
changeable and that there cannot be a preferred direction. | �ω|
is the magnitude of the rotation rate vector, i.e., essentially
the square root of the rotational kinetic energy. � does not
have a physical meaning and it does not define the state of a
molecule uniquely. It is merely used to simplify the notation.

Let us now define the difference between the state vector
of a single molecules and the local average state vector as

�̃ i ≡ � i − 〈 � j 〉, ∀ j s.t. |ξ j − ξi | ≤ �x/2. (7)

where �x = 1Å is the spatial resolution. With this notation,
the two-point correlation function is

Rα,β(x, r) ≡ 〈̃ i
α̃

j
β〉

√

〈
(

̃ i
α

)2〉〈
(

̃ i
β

)2〉
(8)

∀i s.t. |ξ i − x | ≤ 1

2
�x

∀ j s.t. |ξ j − x | ≤ 1

2
�x

and

∣
∣
∣
∣

√
(

η j−ηi
)2 + (

ζ j−ζ i
)2−r

∣
∣
∣
∣
≤1

2
�r.

The definition is that of a correlation coefficient, except that
the averages in the numerator and the denominator go over
different groups of molecules. The numerator is the covari-
ance of the state vector of molecules separated by distance
r at the shock–normal coordinate x . The average hence goes

over all molecules which are within �x and �r (�r = 0.2Å)
of each other. The average in the denominator only requires
that molecules are within �x of each other. In practice, the
difference between Eq. 8 and the correlation coefficient will
be negligible.

The different panels of Fig. 4 show the different com-
ponents of Rα,β(x, r) for the M = 3.56 shock in dense
nitrogen. Note that Rα,β = Rβ,α . The horizontal scale is
the shock–normal coordinate normalized by the shock thick-
ness (7.5Å). Flow is from left to right, such that the left hand
side of each panel corresponds to the cold side of the shock
wave. The vertical scale is the radial distance normalized by
the Lennard–Jones radius (σL J,N2 = 3.318Å) of the nitrogen
atom. The strong deviations from zero for the smallest
observed spacings (lower edge of the panels) are due to the
small number of particle pairs with very small separations
and have thus to be interpreted as noise. While R can also
be negative, no statistically significant negative values have
been observed. The color coding thus only covers positive
values.

Upstream and downstream of the shock wave, no correla-
tion (discernible from noise) can be observed for any com-
ponent of Rα,β . The lower noise levels downstream of the
shock wave can be attributed to the higher density there such
that more particle pairs fall into each δx–δr bin of the histo-
gram. The density ratio is roughly 2 such that the number of
molecule pairs quadruples. The noise is thus cut in half.

The most significant features of Fig. 4 are the long-range
positive correlations visible in each panel. They are centered
slightly on the cold side of the shock wave. The vertical
dashed lines are plotted at x/� = −0.75 and x/� = 0.25
as visual aids. The two–point correlation between the shock–
normal velocity is strongest (Fig. 4a), but still weak in abso-
lute terms, reaching only ∼ 0.05 for small r . R⊥,⊥ > 0 is
clearly distinguishable from noise for r/σ = 10 (∼ 6× pre-
shock mean distance between molecules). The other compo-
nents of R deviate less from zero. But since the correlations
exist for all components of R, it is probably more appropriate
to speak of long–range correlations of the molecular kinetic
energy. Simulations for a shock wave in dense argon give
similar results.

7 Three-dimensional structure of a plane shock wave

Lastly, we want to use the wealth of information, which
a molecular dynamics simulation provides to partially
re-interpret the shock thickness. The term “shock structure”
usually refers to the variation of the various thermodynamic
state variables along the shock-normal direction. When mea-
suring, simulating, or theoretically considering the shock
structure, data is either averaged along the direction parallel
to the shock wave, or it is implicitly assumed that the shock
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Fig. 4 Two–point velocity
correlation functions (Eq. 8)
within a shock in dense
nitrogen. The shock-normal
coordinate (horizontal scale) is
nondimensionalized by the
shock thickness �. The vertical
scale is the in-plane distance
between two molecules within
the same slice of thickness
�x = 1Å. It is normalized by
the Lennard-Jones radius σ ;
a R⊥,⊥, b: R⊥,||, c, R⊥,ω,
d R||,|| e R||,ω f Rω,ω

structure is one-dimensional, i.e., that a plane shock wave is
truly plane.

Suppose that the shock wave is not plane on microscopic
scales. Then, in a Gedanken experiment, the averaged shock
structure can be decomposed into two parts: First, the shock
structure one would obtain if the shock wave was indeed
truly plane (Fig. 5a). In this case, the local shock structure
would be identical to the averaged shock structure every-
where. Second, a broadening effect due to deflections up- or
downstream of the shock location from its mean. Consider,
for example, the (purely theoretical) case where the shock
is a discontinuity locally, but that the plane connecting these
discontinuities is wavy (Fig. 5b). Spatial averaging along
the in–plane directions would then produce a smooth shock
profile with a thickness governed by the amplitude of the
plane’s deflections. These two limiting cases are shown in
Fig. 5a and b, respectively. The averaged profile (shown at
the bottom of Figure 5) could be identical, even though the
local profiles (e.g. a step function in Fig. 5b) are qualitatively
different. In our Gedankenexperiment, the averaged shock
structure is a superposition of these two cases. Figure 5c and
d shows two limiting cases with respect to the co–movement
of different iso-lines. While the local shock structure is the
same everywhere in Fig. 5c (yet different from the macro-
scopic structure), even the local structure varies spatially in
Fig. 5d.

We determine the local density and velocity shock
locations xs,ρ and xs,u by finding the location x for given y

0.
25 0.

5

0.
75

(a) (b) (c) (d)

0.
0

1.
0 0.
25

0.
750.
5

0.
25

0.
750.

5

averaged profile

local profile

Fig. 5 Schematic of some limiting cases for the three-dimensional
shock wave structure; a truly plane shock wave; b wavy discontinu-
ity; c strong correlations between iso–density planes; The local shock
structure is the same everywhere, but shifted up– or downstream. d No
correlation between iso-density planes

and z, where the density and the mean velocity within a spher-
ical neighborhood of radius R = 20Å is the mean between
the pre- and the post-shock state. Root [49] uses a somewhat
more refined spatial averaging procedure to find the turbulent
(on a microscopic level) velocity field behind a chemically
reacting shock wave.
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Fig. 6 Density and velocity profiles across shock wave in nitrogen;
solid line: actual structure of density shock; dashed line: cumulative
distribution function for xs,ρ ; dotted line: actual structure of velocity
shock; dash–dotted line: cumulative distribution function for xs,u

We find local shock deflections comparable to the mean-
free path. The velocity shock is smoother than the density
shock and there is no significant correlation between these
deflections. In order to quantify the effect of the three-dimen-
sional structure on the overall shock structure, consider the
limiting case shown in Fig. 5b. Assume that the local shock
structure is discontinuous at the local shock location xs . Then,
the cumulative distribution function (CDF) for xs would be
the corresponding averaged shock structure. This is shown
in Fig. 6. The solid line and the dotted line are the actual
averaged profiles for the density and the velocity across the
shock, respectively (as shown in Fig. 1). The velocity shock
leads the density shock. The dashed curves are the CDFs
for xs,ρ and xs,u (the latter leading the former). Based on
these curves, a shock thickness �C DF can be calculated for
this hypothetical case: �C DF represents 71% (density) and
46% (velocity) of �. One could say that half or more of the
macroscopic shock thickness can be explained by the three-
dimensional structure of the shock wave.

The three-dimensional structure is a necessary conseque-
nce of the breakdown of the continuum hypothesis on the
length scale of the shock thickness. On this microscopic
level, the shock is no longer propagating into a homogeneous
medium, but into one with local fluctuations of the density,
velocity, and temperature. The local speed of propagation for
the shock wave will hence vary spatially. The shock remains
mostly planar for two reasons: through information exchange
in the in-plane directions (molecules have velocity compo-
nents not just in the shock-normal direction) and because the
density, velocity, and temperature average out to their mac-
roscopic values along each shock-normal trajectory.

The re-interpretation of the shock thickness to be partially
due to a “surface roughness” of the shock wave might be

considered merely semantics, but we believe that this point
of view provides an interesting and intuitive alternate inter-
pretation.

As one approaches molecular length scales, the local den-
sity, velocity etc. will inevitably fluctuate because of the finite
number of molecules within the sample volume. The local
shock location will thus show purely statistical fluctuations
and we want to determine if the actual fluctuations exceed
this level.

To this effect we first want to find characteristic length
scales for the purely statistical deflections from scaling argu-
ments. First, consider the deviation of the local density shock
location from its mean. Let n0 be the particle density at x = 0
and R be the radius of the neighborhood. Neglecting the par-
ticular structure of the radial distribution function (basically
the likelihood of finding a molecule at a certain distance)
and the non–unity asymmetry factor (Eq. 3) there will be in
average N = 4

3π R3n0 particles within the neighborhood of
volume V = 4

3π R3.
Let the standard deviation of N be σN ∼ 1/

√
N . This

uncertainty can be converted into a length scale using the
local (number) density gradient,

σx,ρ ∼ σN

(
∂ N

∂x

∣
∣
∣
∣
x=0

)−1

= σN

(

V
∂n

∂x

∣
∣
∣
∣
x=0

)−1

. (9)

The shock thickness is defined based on the maximum
density gradient,

�ρ ≡ ρ2 − ρ1

∂ρ/∂x |max
= n2 − n1

∂n/∂x |max
= �n

∂n/∂x |max

≈ �n

∂n/∂x |x=0
. (10)

The last step utilizes the empirical fact that the location of
the maximum density gradient is close to the origin and that
the gradient at the origin will be comparable to the maximum
gradient. Now substitute Eq. 10 into Eq. 9 to find

σx,ρ

�ρ

∼ σN

V �n
, (11)

and thus

σx,ρ

�ρ

∼
(

R3n0

)−3/2
(

�n

n0

)−1

. (12)

This is the scaling of the statistical shock deflections rel-
ative to the shock thickness with changes of the neighbor-
hood radius, the number density at the origin and the density
change across the shock.

Consider a few limiting cases. For R → ∞, the deflec-
tions vanish as one recaptures macroscopic behavior. For an
infinitely weak shock, i.e., �n → 0, the deflections tend to
infinity even compared to the shock thickness, which itself
tends to infinity in this limit. This is because the microscopic
fluctuations exceed the very weak density change across the
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shock. Now assume that the relative density jump across the
shock �n/n remains constant, then an increasing absolute
density decreases the relative fluctuations.

For the velocity shock, a similar approach can be taken.
The uncertainty of the molecular velocity of each particle
within the neighborhood scales with the speed of sound c.
Since there are N particles, the uncertainty for the average
velocity is σu ∼ c/

√
N . This can be converted into a length

scale using the local velocity gradient,

σx,u ∼ σu

∂u/∂x |x=0
. (13)

Following the same arguments as above, this can be rewrit-
ten as

σx,u

�u
∼ σu

u0
∼ a

(

n0 R3
)1/2�u

u0
u0

= 1

M0

(

R3n0

)−1/2
(
�u

u0

)−1

,

(14)

where u0 and M0 are the local velocity and the local Mach
number at x = 0, respectively. This result is different from
Eq. 12 in that it predicts a weaker dependence on R and in
that the Mach number enters directly. Consider two shock
waves with identical velocity jumps �u/u0 but with differ-
ent Mach numbers. The same velocity jump achieved at a
smaller Mach number leads to larger uncertainty. This is rea-
sonable because a lower Mach number for a given velocity
means that the speed of sound is also higher and thus the
uncertainty of the local velocity data is elevated.

Equations. 12 and 14 predict a faster-than-linear decay of
the perturbations with exponents −4.5 for the density shock
and −1.5 for the velocity shock. These results can be com-
pared to the actual dependence of the shock deflections versus
the neighborhood radius R. If they show a different scaling,
then an additional physical process is likely to be at work.
In fact, when a physical phenomenon other than just noise
underlies the shock deflections, then one would expect that
(a) it affects the density and the velocity shock equally, and
(b) the decay with increasing R would be slower than for
purely statistical fluctuations.

Figure 7 shows the standard deviations σx,ρ and σx,u vs.
R in a log–log-plot. The dotted lines represent least-squares
power-law fits with exponents as shown in the labels. A few
things are worth pointing out: First, the slopes of the lines
are much lower than predicted by Eqs. 12 and 14 suggesting
that these fluctuations are not just noise. Secondly, the slopes
for the density and the velocity shock—while not equal—are
comparable and within the uncertainty. Third, and contrary
to the predictions in Eqs. 12 and 14, the slopes for the veloc-
ity shocks are steeper than for the density shocks. All three
features are consistent with and suggest that the fluctuations
are not purely noise.
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Fig. 7 Standard deviation of shock deflections for the density
(solid lines) and velocity (dashed lines) shock in argon (black lines)
and nitrogen (blue lines) versus neighborhood radius. The dotted lines
are power-law fits with exponents as labeled

8 Conclusions

The shock structure in dilute and rarefied gases is of engineer-
ing interest, because the shock thickness can become compa-
rable (or larger) then some external length scale. In contrast,
it is hard to imagine an application where the exact shock
structure in a dense fluid can have practical ramifications.
The shock thickness there is in the order of a few molecular
diameters, and compressible flows are hardly encountered in
micro and nano fluid mechanics. Probably the only exception
to this rule is the simulation of shock waves in solids, which
has military applications.

Shocks in dense liquids thus have to be seen as a bench-
mark test case either for numerical techniques or for the-
oretical approaches, because the strong gradients and
thermodynamic non–equilibrium effects within them chal-
lenge their very foundations. To this end, we have presented a
number of phenomena, whose compatibility with other solu-
tion techniques can be easily verified? They may also hint at
new direction in the theory development.

The effects described owe their discovery to the ever
increasing computational resources. The computations
require large sample sizes to reveal subtle effects and pro-
vide good statistics and had to employ the most expensive
(yet most general) computational technique to allow their
existence in the first place. But if such measures are taken,
then there is still “new physics” left to be discovered even in
such a classical problem.
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