836 research outputs found

    Screening of microbial communities associated with endive lettuce during postharvest processing on industrial scale

    Get PDF
    In this study, the composition of the microbial community on endive lettuce (Cichorium endivia) was evaluated during different postharvest processing steps. Microbial community structure was characterized by culture-dependent and culture-independent methods. Endive lettuce was sampled exemplarily at four different stages of processing (raw material, cut endive lettuce, washed endive lettuce, and spin-dried (ready to pack) endive lettuce) and analysed by plate count analysis using non-selective and selective agar plates with subsequent identification of bacteria colonies by matrix-assisted laser desorption/ionization time-of light mass spectrometry (MALDI-TOF MS). Additionally, terminal-restriction fragment length polymorphism (TRFLP) analysis and 16S rRNA gene nucleotide sequence analysis were conducted. The results revealed structural differences in the lettuce microbiomes during the different processing steps. The most predominant bacteria on endive lettuce were detected by almost all methods. Bacterial species belonging to the families Pseudomonadaceae, Enterobacteriaceae, Xanthomonadaceae, and Moraxellaceae were detected in most of the examined samples including some unexpected potentially human pathogenic bacteria, especially those with the potential to build resistance to antibiotics (e.g., Stenotrophomonas maltophilia (0.9 % in cut sample, 0.4 % in spin-dried sample), Acinetobacter sp. (0.6 % in raw material, 0.9 % in cut sample, 0.9 % in washed sample, 0.4 % in spin-dried sample), Morganella morganii (0.2 % in cut sample, 3 % in washed sample)) revealing the potential health risk for consumers. However, more seldom occurring bacterial species were detected in varying range by the different methods. In conclusion, the applied methods allow the determination of the microbiome's structure and its dynamic changes during postharvest processing in detail. Such a combined approach enables the implementation of tailored control strategies including hygienic design, innovative decontamination techniques, and appropriate storage conditions for improved product safety

    Superconductivity in hole-doped C60 from electronic correlations

    Full text link
    We derive a model for the highest occupied molecular orbital band of a C60 crystal which includes on-site electron-electron interactions. The form of the interactions are based on the icosahedral symmetry of the C60 molecule together with a perturbative treatment of an isolated C60 molecule. Using this model we do a mean-field calculation in two dimensions on the [100] surface of the crystal. Due to the multi-band nature we find that electron-electron interactions can have a profound effect on the density of states as a function of doping. The doping dependence of the transition temperature can then be qualitatively different from that expected from simple BCS theory based on the density of states from band structure calculations

    Asymmetric Squares as Standing Waves in Rayleigh-Benard Convection

    Full text link
    Possibility of asymmetric square convection is investigated numerically using a few mode Lorenz-like model for thermal convection in Boussinesq fluids confined between two stress free and conducting flat boundaries. For relatively large value of Rayleigh number, the stationary rolls become unstable and asymmetric squares appear as standing waves at the onset of secondary instability. Asymmetric squares, two dimensional rolls and again asymmetric squares with their corners shifted by half a wavelength form a stable limit cycle.Comment: 8 pages, 7 figure

    The influence of Galactic aberration on precession parameters determined from VLBI observations

    Full text link
    The influence of proper motions of sources due to Galactic aberration on precession models based on VLBI data is determined. Comparisons of the linear trends in the coordinates of the celestial pole obtained with and without taking into account Galactic aberration indicate that this effect can reach 20 μ\muas per century, which is important for modern precession models. It is also shown that correcting for Galactic aberration influences the derived parameters of low-frequency nutation terms. It is therefore necessary to correct for Galactic aberration in the reduction of modern astrometric observations

    Screening, Coulomb pseudopotential, and superconductivity in alkali-doped Fullerenes

    Full text link
    We study the static screening in a Hubbard-like model using quantum Monte Carlo. We find that the random phase approximation is surprisingly accurate almost up to the Mott transition. We argue that in alkali-doped Fullerenes the Coulomb pseudopotential μ\mu^\ast is not very much reduced by retardation effects. Therefore efficient screening is important in reducing μ\mu^{\ast} sufficiently to allow for an electron-phonon driven superconductivity. In this way the Fullerides differ from the conventional picture, where retardation effects play a major role in reducing the electron-electron repulsion.Comment: 4 pages RevTeX with 2 eps figures, additional material available at http://www.mpi-stuttgart.mpg.de/docs/ANDERSEN/fullerene

    Mott Transition in Degenerate Hubbard Models: Application to Doped Fullerenes

    Full text link
    The Mott-Hubbard transition is studied for a Hubbard model with orbital degeneracy N, using a diffusion Monte-Carlo method. Based on general arguments, we conjecture that the Mott-Hubbard transition takes place for U/W \propto \sqrt{N}, where U is the Coulomb interaction and W is the band width. This is supported by exact diagonalization and Monte-Carlo calculations. Realistic parameters for the doped fullerenes lead to the conclusion that stoichiometric A_3 C_60 (A=K, Rb) are near the Mott-Hubbard transition, in a correlated metallic state.Comment: 4 pages, revtex, 1 eps figure included, to be published in Phys.Rev.B Rapid Com

    VLBI measurement of the secular aberration drift

    Full text link
    While analyzing decades of very long baseline interferometry (VLBI) data, we detected the secular aberration drift of the extragalatic radio source proper motions caused by the rotation of the Solar System barycenter around the Galactic center. Our results agree with the predicted estimate to be 4-6 micro arcseconds per year ({\mu}as/yr) towards {\alpha} = 266\circ and {\delta} = -29\circ. In addition, we tried to detect the quadrupole systematics of the velocity field. The analysis method consisted of three steps. First, we analyzed geodetic and astrometric VLBI data to produce radio source coordinate time series. Second, we fitted proper motions of 555 sources with long observational histories over the period 1990-2010 to their respective coordinate time series. Finally, we fitted vector spherical harmonic components of degrees 1 and 2 to the proper motion field. Within the error bars, the magnitude and the direction of the dipole component agree with predictions. The dipole vector has an amplitude of 6.4 \pm 1.5 {\mu}as/yr and is directed towards equatorial coordinates {\alpha} = 263\circ and {\delta} = -20\circ. The quadrupole component has not been detected. The primordial gravitational wave density, integrated over a range of frequencies less than 10-9 Hz, has a limit of 0.0042 h-2 where h is the normalized Hubble constant is H0/(100 km s-1)
    corecore