31 research outputs found

    Rethinking irrigation modernisation: Realising multiple objectives through the integration of fisheries

    Get PDF
    Irrigation has been, and will remain, instrumental in addressing water security (Sustainable Development Goal (SDG) 6), food insecurity (SDG 2) and poverty (SDG 1) goals. However, the global context in which irrigation takes place is changing rapidly. A call for healthier and more sustainable food systems is placing new demands on how irrigation is developed and managed. Growing pressures from competing water uses in the domestic and industrial sectors, as well increasing environmental awareness, mean irrigation is increasingly called on to perform better, delivering acceptable returns on investment and simultaneously improving food security, rural livelihoods and nutrition, as well as supporting environmental conservation. Better integration of fisheries (including aquaculture) in irrigation planning, investment and management can contribute to the modernisation of irrigation and the achievement of the multiple objectives that it is called on to deliver. A framework illustrating how fisheries can be better integrated with irrigation, and how the two can complement each other across a range of scales, from scheme to catchment and, ultimately, national level, is presented

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Routine quantification of phytoplankton groups - microscopy or pigment analyses?

    No full text
    12 pages, 5 figures, 1 table.-- It is ELOISE contribution no. 448/40Phytoplankton pigments in samples taken from nutrient-enriched and non-enriched 3 m3 seawater enclosures were separated and quantified using high-performance liquid chromatography (HPLC). The enclosures were with and without inorganic (N, P, Si) and organic (glucose, C) nutrient enrichments, resulting in a variation of phytoplankton groups in time and space. The relative contribution of the major phytoplankton groups to the total chlorophyll a (i.e. chlorophyll a plus chlorophyllide a) was estimated by the CHEMTAX program. The results were compared to phytoplankton groups identified and quantified by light and epifluorescence microscopy. For the pigmented flagellate groups the results obtained by microscopy and pigment analyses using the CHEMTAX program showed similar trends. The picocyanobacteria were readily quantified by microscopy and the results were similar to those obtained by flow-cytometry, while the CHEMTAX program for the cyanobacteria revealed different trends. Microscopy and pigment analyses provided similar trends in diatom population development. Estimated diatom contributions to total phytoplankton biomass, however, were considerably higher when based on microscopy than when based on the CHEMTAX program, especially in Si-amended enclosures. Total chlorophyll a:carbon ratios for diatoms were at the lower end of a previously reported range between 1:27 and 1:67. For the pigmented flagellate groups the total chlorophyll a:carbon ratios were above that range. In routine monitoring of phytoplankton we recommend the use of the CHEMTAX program based on HPLC pigment analyses accompanied by a screening for the dominating species by microscopy, and by flow-cytometry for quantification of picocyanobacteriaThis study was supported by MAST III (contracts MAS3-CT-0016-MEDEA, and MAS3-CT96-5034), by a French doctoral fellowship from the Ministère de la Recherche et de l’Enseignement Supérieur, and by the research project NTAP (contract EVK3-CT-2000-00022) of the EU RTD Programme ‘Environment and Sustainable Development’ that forms part of the ELOISE projects clusterPeer Reviewe

    Phytoplankton composition and biomass during leg 7 of Galathea 3 cruise across the southern Indian Ocean

    No full text
    Phytoplankton composition and biomass was investigated across the southern Indian Ocean. Phytoplankton composition was determined from pigment analysis with subsequent calculations of group contributions to total chlorophyll a (Chl a) using CHEMTAX and, in addition, by examination in the microscope. The different plankton communities detected reflected the different water masses along a transect from Cape Town, South Africa, to Broome, Australia. The first station was influenced by the Agulhas Current with a very deep mixed surface layer. Based on pigment analysis this station was dominated by haptophytes, pelagophytes, cyanobacteria, and prasinophytes. Sub-Antarctic waters of the Southern Ocean were encountered at the next station, where new nutrients were intruded to the surface layer and the total Chl a concentration reached high concentrations of 1.7 µg Chl a/L with increased proportions of diatoms and dinoflagellates. The third station was also influenced by Southern Ocean waters, but located in a transition area on the boundary to subtropical water. Prochlorophytes appeared in the samples and Chl a was low, i.e., 0.3 µg/L in the surface with prevalence of haptophytes, pelagophytes, and cyanobacteria. The next two stations were located in the subtropical gyre with little mixing and general oligotrophic conditions where prochlorophytes, haptophytes and pelagophytes dominated. The last two stations were located in tropical waters influenced by down-welling of the Leeuwin Current and particularly prochlorophytes dominated at these two stations, but also pelagophytes, haptophytes and cyanobacteria were abundant. Haptophytes Type 6 (sensu Zapata et al., 2004), most likely Emiliania huxleyi, and pelagophytes were the dominating eucaryotes in the southern Indian Ocean. Prochlorophytes dominated in the subtrophic and oligotrophic eastern Indian Ocean where Chl a was low, i.e., 0.043-0.086 µg total Chl a/L in the surface, and up to 0.4 µg Chl a/L at deep Chl a maximum. From the pigment analyses it was found that the dinoflagellates of unknown trophy enumerated in the microscope at the oligotrophic stations were possibly heterotrophic or mixotrophic. Presence of zeaxanthin containing heterotrophic bacteria may have increased the abundance of cyanobacteria determined by CHEMTAX
    corecore