90 research outputs found

    Fast Calculation of the Lomb-Scargle Periodogram Using Graphics Processing Units

    Full text link
    I introduce a new code for fast calculation of the Lomb-Scargle periodogram, that leverages the computing power of graphics processing units (GPUs). After establishing a background to the newly emergent field of GPU computing, I discuss the code design and narrate key parts of its source. Benchmarking calculations indicate no significant differences in accuracy compared to an equivalent CPU-based code. However, the differences in performance are pronounced; running on a low-end GPU, the code can match 8 CPU cores, and on a high-end GPU it is faster by a factor approaching thirty. Applications of the code include analysis of long photometric time series obtained by ongoing satellite missions and upcoming ground-based monitoring facilities; and Monte-Carlo simulation of periodogram statistical properties.Comment: Accepted by ApJ. Accompanying program source (updated since acceptance) can be downloaded from http://www.astro.wisc.edu/~townsend/resource/download/code/culsp.tar.g

    Hydrodynamical simulations of colliding jets:modeling 3C 75

    Get PDF
    Radio observations suggest that 3C 75, located in the dumbbell shaped galaxy NGC 1128 at the center of Abell 400, hosts two colliding jets. Motivated by this source, we perform three-dimensional hydrodynamical simulations using a modified version of the GPU-accelerated Adaptive-MEsh-Refinement hydrodynamical parallel code (GAMER\mathit{GAMER}) to study colliding extragalactic jets. We find that colliding jets can be cast into two categories: 1) bouncing jets, in which case the jets bounce off each other keeping their identities, and 2) merging jets, when only one jet emerges from the collision. Under some conditions the interaction causes the jets to break up into oscillating filaments of opposite helicity, with consequences for their downstream stability. When one jet is significantly faster than the other and the impact parameter is small, the jets merge; the faster jet takes over the slower one. In the case of merging jets, the oscillations of the filaments, in projection, may show a feature which resembles a double helix, similar to the radio image of 3C 75. Thus we interpret the morphology of 3C 75 as a consequence of the collision of two jets with distinctly different speeds at a small impact parameter, with the faster jet breaking up into two oscillating filaments.Comment: 13 pages, 9 figures, accepted for publication in Ap

    The Schro¨\ddot{o}dinger-Poisson equations as the large-N limit of the Newtonian N-body system: applications to the large scale dark matter dynamics

    Get PDF
    In this paper it is argued how the dynamics of the classical Newtonian N-body system can be described in terms of the Schro¨\ddot{o}dinger-Poisson equations in the large NN limit. This result is based on the stochastic quantization introduced by Nelson, and on the Calogero conjecture. According to the Calogero conjecture, the emerging effective Planck constant is computed in terms of the parameters of the N-body system as M5/3G1/2(N/)1/6\hbar \sim M^{5/3} G^{1/2} (N/)^{1/6}, where is GG the gravitational constant, NN and MM are the number and the mass of the bodies, and is their average density. The relevance of this result in the context of large scale structure formation is discussed. In particular, this finding gives a further argument in support of the validity of the Schro¨\ddot{o}dinger method as numerical double of the N-body simulations of dark matter dynamics at large cosmological scales.Comment: Accepted for publication in the Euro. Phys. J.

    Ultra Light Axionic Dark Matter: Galactic Halos and Implications for Observations with Pulsar Timing Arrays

    Get PDF
    The cold dark matter (CDM) paradigm successfully explains the cosmic structure over an enormous span of redshifts. However, it fails when probing the innermost regions of dark matter halos and the properties of the Milky Way’s dwarf galaxy satellites. Moreover, the lack of experimental detection of Weakly Interacting Massive Particle (WIMP) favors alternative candidates such as light axionic dark matter that naturally arise in string theory. Cosmological N-body simulations have shown that axionic dark matter forms a solitonic core of size of ≃150 pc in the innermost region of the galactic halos. The oscillating scalar field associated to the axionic dark matter halo produces an oscillating gravitational potential that induces a time dilation of the pulse arrival time of ≃400 ns/(m B /10 −22 eV) for pulsar within such a solitonic core. Over the whole galaxy, the averaged predicted signal may be detectable with current and forthcoming pulsar timing array telescopes.IDM acknowledges financial support from University of the Basque Country UPV/EHU under the program "Convocatoria de contratacion para la especializacion de personal investigador doctor en la UPV/EHU 2015", from the Spanish Ministerio de Economia y Competitividad through research project FIS2010-15492, and from the Basque Government through research project IT-956-16. RL is supported by the Spanish Ministry of Economy and Competitiveness through research projects FIS2010-15492 and Consolider EPI CSD2010-00064, and by the University of the Basque Country UPV/EHU under program UFI 11/55. IDM and RL also acknowledge support from the COST Action CA1511 Cosmology and Astrophysics Network for Theoretical Advances and Training Actions (CANTATA). TJB acknowledges generous hospitality from the Institute for Advanced Studies in Hong Kong and helpful conversations with Nick Kaiser and Kfir Blum. SHHT is supported by CRF Grant HKUST4/CRF/13G and GRF 16305414 issued by the Research Grants Council (RGC) of the Government of the Hong Kong SAR. Chipbond Technology Corporation is acknowledged for donating the GPU cluster with which this work was conducted. This work was supported in part by the National Science Council of Taiwan under grants NSC100-2112-M-002-018-MY3 and NSC99-2112-M-002-009-MY

    Complete waveform model for compact binaries on eccentric orbits

    Get PDF
    We present a time domain waveform model that describes the inspiral-merger-ringdown (IMR) of compact binary systems whose components are non-spinning, and which evolve on orbits with low to moderate eccentricity. The inspiral evolution is described using third order post-Newtonian equations both for the equations of motion of the binary, and its far-zone radiation field. This latter component also includes instantaneous, tails and tails-of-tails contributions, and a contribution due to non-linear memory. This framework reduces to the post-Newtonian approximant TaylorT4 at third post-Newtonian order in the zero eccentricity limit. To improve phase accuracy, we incorporate higher-order post-Newtonian corrections for the energy flux of quasi-circular binaries and gravitational self-force corrections to the binding energy of compact binaries. This enhanced inspiral evolution prescription is combined with an analytical prescription for the merger-ringdown evolution using a catalog of numerical relativity simulations. This IMR waveform model reproduces effective-one-body waveforms for systems with mass-ratios between 1 to 15 in the zero eccentricity limit. Using a set of eccentric numerical relativity simulations, not used during calibration, we show that our eccentric model accurately reproduces the features of eccentric compact binary coalescence throughout the merger. Using this model we show that the gravitational wave transients GW150914 and GW151226 can be effectively recovered with template banks of quasi-circular, spin-aligned waveforms if the eccentricity e0e_0 of these systems when they enter the aLIGO band at a gravitational wave frequency of 14 Hz satisfies e0GW1509140.15e_0^{\rm GW150914}\leq0.15 and e0GW1512260.1e_0^{\rm GW151226}\leq0.1

    PyCOOL - a Cosmological Object-Oriented Lattice code written in Python

    Full text link
    There are a number of different phenomena in the early universe that have to be studied numerically with lattice simulations. This paper presents a graphics processing unit (GPU) accelerated Python program called PyCOOL that solves the evolution of scalar fields in a lattice with very precise symplectic integrators. The program has been written with the intention to hit a sweet spot of speed, accuracy and user friendliness. This has been achieved by using the Python language with the PyCUDA interface to make a program that is easy to adapt to different scalar field models. In this paper we derive the symplectic dynamics that govern the evolution of the system and then present the implementation of the program in Python and PyCUDA. The functionality of the program is tested in a chaotic inflation preheating model, a single field oscillon case and in a supersymmetric curvaton model which leads to Q-ball production. We have also compared the performance of a consumer graphics card to a professional Tesla compute card in these simulations. We find that the program is not only accurate but also very fast. To further increase the usefulness of the program we have equipped it with numerous post-processing functions that provide useful information about the cosmological model. These include various spectra and statistics of the fields. The program can be additionally used to calculate the generated curvature perturbation. The program is publicly available under GNU General Public License at https://github.com/jtksai/PyCOOL . Some additional information can be found from http://www.physics.utu.fi/tiedostot/theory/particlecosmology/pycool/ .Comment: 23 pages, 12 figures; some typos correcte
    corecore