38 research outputs found

    Wave-Current Impact on Shear Stress Patterns around 3D Shallow Bedforms

    Get PDF
    Observations from wave basin experiments and wave-resolving numerical simulations demonstrate the effect of wave-current interaction on shear stress around a sandy mound. Observations from the wave basin show that the mound deformation rate and morphological patterns depend on the mixture of waves and currents in the incident flow conditions. A SWASH nonhydrostatic numerical model was used to expand the parameter space of wave-current conditions observed in the flume and characterize the response of the near-bed shear stress to the mound. The model was validated with observations from wave-alone, current-alone, and wave-current flume tests and then ran for a suite of numerical flow conditions which isolate the impact of the ratio of wave-current energy on the bed shear stress. Results show how the current-to-wave ratio impacts the spatial heterogeneity of shear stress across the mound, with the region of shear stress intensification around the mound and the location of the peak shear stress becoming asymmetric with more mixed wave-current flows. These results show the nonlinear response of shear stress patterns to combined wave-current flows and how these patterns may impact eventual sediment transport and mound evolution.HYDRALAB+ Adapting to climate chang

    MODEX: Laboratory experiment exploring sediment spreading of a mound under waves and currents

    Get PDF
    The dispersal of sand from submerged mounds in the nearshore is driven by the interplay of processes such as converging and recirculating flows, changing roughness, bed slope effects and wave focusing/refraction. This morphological diffusivity is key to understanding sand bars in shallow seas, tidal inlets, estuaries, and the nearshore response to human interventions such as nourishments and dredging. Most of the work on the evolution of submerged mounds has been based on fluvial studies, focusing on flow without waves. In these cases, circular mounds tend to deform to crescentic (barchan) shapes. In contrast, observations of sandbars and berms in the nearshore subjected to waves show much more complex translation and deformation behavior. This contribution introduces the laboratory MOrphological Diffusivity Experiment (MODEX) aimed at examining morphological diffusivity under different forcing conditions. The experiment particularly addresses the linkages between small scale (local) effects (e.g. bed slope, bedforms) on the adjustment of sandy mounds.Peer ReviewedPostprint (published version

    Towards Underwater Macroplastic Monitoring Using Echo Sounding

    Get PDF
    Plastics originating from land are mainly transported to the oceans by rivers. The total plastic transport from land to seas remains uncertain because of difficulties in measuring and the lack of standard observation techniques. A large focus in observations is on plastics floating on the water surface. However, an increasing number of observations suggest that large quantities of plastics are transported in suspension, below the water surface. Available underwater plastic monitoring methods use nets or fish traps that need to be deployed below the surface and are labor-intensive. In this research, we explore the use of echo sounding as an innovative low-cost method to quantify and identify suspended macroplastics. Experiments under controlled and natural conditions using a low-cost off-the-shelf echo sounding device show that plastic items can be detected and identified up to 7 m below the river surface. Eight different debris items (metal can, cup, bottles, food wrappers, food container) were characterized based on their reflection signature. Reflectance from plastic items diverged significantly from organic material and non-plastic anthropogenic debris. During a multi-day trial field expedition in the Guadalete river, Spain, we found that between 0.8 and 6.3 m depth considerable quantities of plastics are transported. As most plastic monitoring and removal strategies focus on the upper layer below the surface (up to approximately 1.5 m depth), a substantial share of the total plastic transport may be neglected. With this paper we 1) demonstrate that echo sounding is a promising tool for underwater plastic monitoring, and 2) emphasize the importance of an improved understanding of the existing plastic loads below the surface.SB was received funding from the Lamminga Fund and the department of Water Resources Management (TU Delft). The work of TE is supported by the Veni research program The River Plastic Monitoring Project with project number 18211, which is (partly) funded by the Dutch Research Council (NWO)

    ICON.NL: coastline observatory to examine coastal dynamics in response to natural forcing and human interventions

    Get PDF
    In the light of challenges raised by a changing climate and increasing population pressure in coastal regions, it has become clear that theoretical models and scattered experiments do not provide the data we urgently need to understand coastal conditions and processes. We propose a Dutch coastline observatory named ICON.NL, based at the Delfland Coast with core observations focused on the internationally well-known Sand Engine experiment, as part of an International Coastline Observatories Network (ICON). ICON.NL will cover the physics and ecology from deep water to the dunes. Data will be collected continuously by novel remote sensing and in-situ sensors, coupled to numerical models to yield unsurpassed long-term coastline measurements. The combination of the unique site and ambitious monitoring design enables new avenues in coastal science and a leap in interdisciplinary research

    Tidal flow separation at protruding beach nourishments

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1002/2016JC011942In recent years, the application of large-scale beach nourishments has been discussed, with the Sand Motor in the Netherlands as the first real-world example. Such protruding beach nourishments have an impact on tidal currents, potentially leading to tidal flow separation and the generation of tidal eddies of length scales larger than the nourishment itself. The present study examines the characteristics of the tidal flow field around protruding beach nourishments under varying nourishment geometry and tidal conditions, based on extensive field observations and numerical flow simulations. Observations of the flow field around the Sand Motor, obtained with a ship-mounted current profiler and a set of fixed current profilers, show that a tidal eddy develops along the northern edge of the mega-nourishment every flood period. The eddy is generated around peak tidal flow and gradually gains size and strength, growing much larger than the cross-shore dimension of the coastline perturbation. Based on a 3 week measurement period, it is shown that the intensity of the eddy modulates with the spring-neap tidal cycle. Depth-averaged tidal currents around coastline perturbations are simulated and compared to the field observations. The occurrence and behavior of tidal eddies is derived for a large set of simulations with varying nourishment size and shape. Results show that several different types of behavior exist, characterized by different combinations of the nourishment aspect ratio, the size of the nourishment relative to the tidal excursion length, and the influence of bed friction.STW grantERC-Advanced GrantSTW Grant no. 12686: Nature-driven nourishments of coastal systems (NatureCoast), S1: Coastal SafetyERC-Advanced Grant no. 291206 - Nearshore Monitoring and Modeling (NEMO

    The influence of the Sand Engine of the Delfland coastal cell

    No full text
    The Sand Engine is an example of a feeder nourishment that is intended to nourish coastal systems. This strategy is based on placing sediments highly concentrated at one location, from which it is expected to spread alongshore over large distances on decadal timescales. Here the morphological development of the Sand Engine mega feeder nourishment and the adjacent coastal sections is presented. This study is based on 37 high-resolution topographical surveys, spanning a coastal cell of 17 km alongshore. These data are explored to examine the alongshore spreading in the first five years after construction in 2011, as well as the response at different depth contours in the coastal profile. The analysis shows that the highly concentrated nourishment supplies sediment to a stretch of coast that is several times the initial length of the nourishment, as the size of the Sand Engine peninsula increased from 2.2 to 5.8km alongshore. The plan-form shape of the peninsula is found to gradually extend alongshore, while reducing in cross-shore extent. This behaviour is found to vary strongly with depth contours. The strongest response was found around the mean sea level iso-bath in contrast to the deeper parts and Aeolian parts of the Sand Engine. This variability in response over depth results in different profile slope development in accretive and erosive areas. In coastal sections which are eroding the sub-tidal slope decreases, while accretive profiles experience a profile slope increment over time. The cross shore extent of the morphologic response shows limited morphodynamic activity below the -8m NAP depth contour and confirms earlier assessments of closure depth at this coast. The current findings at the Sand Engine imply that mega feeder nourishments can be beneficial to the sediment budget of a larger coastal cell. However, volumes that are deposited around or below the depth of closure (around 15 % for the Sand Engine) may react on much longer time-scales than intended. Therefore, the feeding characteristics of mega feeder nourishments on time-scales of years should be assessed using the nourished volumes above the depth of closure rather than the total volume.Abstract to the presentation held on the NCK days 2018 in Haarlem, the Netherlands.status: publishe

    Morphodynamic Acceleration Techniques for Multi-Timescale Predictions of Complex Sandy Interventions

    No full text
    Thirty one percent (31%) of the world’s coastline consists of sandy beaches and dunes that form a natural defense protecting the hinterland from flooding. A common measure to mitigate erosion along sandy beaches is the implementation of sand nourishments. The design and acceptance of such a mitigating measure require information on the expected evolution at time scales from storms to decades. Process-based morphodynamic models are increasingly applied, together with morphodynamic acceleration techniques, to obtain detailed information on this wide scale of ranges. This study shows that techniques for the acceleration of the morphological evolution can have a significant impact on the simulated evolution and dispersion of sandy interventions. A calibrated Delft3D model of the Sand Engine mega-nourishment is applied to compare different acceleration techniques, focusing on accuracy and computational times. Results show that acceleration techniques using representative (schematized) wave conditions are not capable of accurately reproducing the morphological response in the first two years. The best reproduction of the morphological behavior of the first five years is obtained by the brute force simulations. Applying input filtering and a compression factor provides similar accuracy yet with a factor five gain in computational cost. An attractive method for the medium to long time scales, which further reduces computational costs, is a method that uses representative wave conditions based on gross longshore transports, while showing similar results as the benchmark simulation. Erosional behavior is captured well in all considered techniques with variations in volumes of about 1 million m 3 after three decades. The spatio-temporal variability of the predicted alongshore and cross-shore distribution of the morphological evolution however have a strong dependency on the selected acceleration technique. A new technique, called ’brute force merged’, which incorporates the full variability of the wave climate, provides the optimal combination of phenomenological accuracy and computational efficiency (a factor of 20 faster than the benchmark brute force technique) at both the short and medium to long time scales. This approach, which combines realistic time series and the mormerge technique, provides an attractive and flexible method to efficiently predict the evolution of complex sandy interventions at time scales from hours to decades

    Morphodynamic Acceleration Techniques for Multi-Timescale Predictions of Complex Sandy Interventions

    No full text
    Thirty one percent (31%) of the world's coastline consists of sandy beaches and dunes that form a natural defense protecting the hinterland from flooding. A common measure to mitigate erosion along sandy beaches is the implementation of sand nourishments. The design and acceptance of such a mitigating measure require information on the expected evolution at time scales from storms to decades. Process-based morphodynamic models are increasingly applied, together with morphodynamic acceleration techniques, to obtain detailed information on this wide scale of ranges. This study shows that techniques for the acceleration of the morphological evolution can have a significant impact on the simulated evolution and dispersion of sandy interventions. A calibrated Delft3D model of the Sand Engine mega-nourishment is applied to compare different acceleration techniques, focusing on accuracy and computational times. Results show that acceleration techniques using representative (schematized) wave conditions are not capable of accurately reproducing the morphological response in the first two years. The best reproduction of the morphological behavior of the first five years is obtained by the brute force simulations. Applying input filtering and a compression factor provides similar accuracy yet with a factor five gain in computational cost. An attractive method for the medium to long time scales, which further reduces computational costs, is a method that uses representative wave conditions based on gross longshore transports, while showing similar results as the benchmark simulation. Erosional behavior is captured well in all considered techniques with variations in volumes of about 1 million m 3 after three decades. The spatio-temporal variability of the predicted alongshore and cross-shore distribution of the morphological evolution however have a strong dependency on the selected acceleration technique. A new technique, called 'brute force merged', which incorporates the full variability of the wave climate, provides the optimal combination of phenomenological accuracy and computational efficiency (a factor of 20 faster than the benchmark brute force technique) at both the short and medium to long time scales. This approach, which combines realistic time series and the mormerge technique, provides an attractive and flexible method to efficiently predict the evolution of complex sandy interventions at time scales from hours to decades

    Aeolian sediment transport on a beach with a varying sediment supply

    No full text
    Variability in aeolian sediment transport rates have traditionally been explain by variability in wind speed. Although it is recognised in literature that limitations in sediment supply can influence sediment transport significantly, most models that predict aeolian sediment transport attribute a dominant role to the magnitude of the wind speed. In this paper it is proposed that spatio-temporal variability of aeolian sediment transport on beaches can be dominated by variations in sediment supply rather than variations in wind speed.A new dataset containing wind speed, direction and sediment transport is collected during a 3. day field campaign at Vlugtenburg beach, The Netherlands. During the measurement campaign, aeolian sediment transport varied in time with the tide while wind speed remained constant. During low tide, measured transport was significantly larger than during high tide. Measured spatial gradients in sediment transport at the lower and upper beaches during fairly constant wind conditions suggest that aeolian sediment transport on beaches may be partly governed by the spatial variability in sediment supply, with relatively large supply in the intertidal zone when exposed and small supply on the upper beach due to sorting processes. The measurements support earlier findings that the intertidal zone can be significant source of sediment for sediment transport on beaches.Both a traditional cubic model (with respect to the wind speed) and a newly proposed linear model are fitted to the field data. The fit quality of both types of models are found to be similar

    NeMo morphology data survey path Delfland 2012-2016

    No full text
    Morphological data collected within the TU Delft NeMo project. Bimonthy measurements of marine and aeolian morphology of the cross shore coastal profile over an alongshore extent of 17km. This is non interpolated data (measured survey paths)
    corecore