24 research outputs found

    Health-related effects and improving extractability of cereal arabinoxylans

    Get PDF
    Arabinoxylans (AXs) are major dietary fibers. They are composed of backbone chains of -(1–4)- linked xylose residues to which -l-arabinose are linked in the second and/or third carbon positions. Recently, AXs have attracted a great deal of attention because of their biological activities such as their immunomodulatory potential. Extraction of AXs has some difficulties; therefore, various methods have beenusedto increase the extractability ofAXs withvaryingdegrees of success, suchas alkaline, enzymatic, mechanical extraction. However, some of these treatments have been reported to be either expensive, such as enzymatic treatments, or produce hazardous wastes and are non-environmentally friendly, such as alkaline treatments. On the other hand, mechanical assisted extraction, especially extrusion cooking, is an innovative pre-treatment that has been used to increase the solubility of AXs. The aim of the current review article is to point out the health-related effects and to discuss the current research on the extraction methods of AXs

    A DeCade of science

    No full text

    Effects of Arabinoxylan and Resistant Starch on Intestinal Microbiota and Short-Chain Fatty Acids in Subjects with Metabolic Syndrome: A Randomised Crossover Study.

    No full text
    Recently, the intestinal microbiota has been emphasised as an important contributor to the development of metabolic syndrome. Dietary fibre may exert beneficial effects through modulation of the intestinal microbiota and metabolic end products. We investigated the effects of a diet enriched with two different dietary fibres, arabinoxylan and resistant starch type 2, on the gut microbiome and faecal short-chain fatty acids. Nineteen adults with metabolic syndrome completed this randomised crossover study with two 4-week interventions of a diet enriched with arabinoxylan and resistant starch and a low-fibre Western-style diet. Faecal samples were collected before and at the end of the interventions for fermentative end-product analysis and 16S ribosomal RNA bacterial gene amplification for identification of bacterial taxa. Faecal carbohydrate residues were used to verify compliance. The diet enriched with arabinoxylan and resistant starch resulted in significant reductions in the total species diversity of the faecal-associated intestinal microbiota but also increased the heterogeneity of bacterial communities both between and within subjects. The proportion of Bifidobacterium was increased by arabinoxylan and resistant starch consumption (P<0.001), whereas the proportions of certain bacterial genera associated with dysbiotic intestinal communities were reduced. Furthermore, the total short-chain fatty acids (P<0.01), acetate (P<0.01) and butyrate concentrations (P<0.01) were higher by the end of the diet enriched with arabinoxylan and resistant starch compared with those resulting from the Western-style diet. The concentrations of isobutyrate (P = 0.05) and isovalerate (P = 0.03) decreased in response to the arabinoxylan and resistant starch enriched diet, indicating reduced protein fermentation. In conclusion, arabinoxylan and resistant starch intake changes the microbiome and short-chain fatty acid compositions, with potential beneficial effects on colonic health and metabolic syndrome.ClinicalTrials.gov NCT01618526

    The Faculty of Engineering and Science

    No full text
    This project, which was written at &quot;Instituto Superior Tcnico&quot; (ISR) in Lisbon, Portugal, addresses the improvement of a goalkeeper for the &quot;RoboCup Middle Size League&quot;. The goalkeeper is one of four robots in the team at ISR. Each of the robots are controlled using a set of behaviours according to the role of each robot in the team. The set of behaviours and their relations is defined in a finite state machine
    corecore