716 research outputs found

    On gas furnaces

    Get PDF
    n/

    Damping of spin waves and singularity of the longitudinal modes in the dipolar critical regime of the Heisenberg-ferromagnet EuS

    Full text link
    By inelastic scattering of polarized neutrons near the (200)-Bragg reflection, the susceptibilities and linewidths of the spin waves and the longitudinal spin fluctuations were determined separately. By aligning the momentum transfers q perpendicular to both \delta S_sw and the spontaneous magnetization M_s, we explored the statics and dynamics of these modes with transverse polarizations with respect to q. In the dipolar critical regime, where the inverse correlation length kappa_z(T) and q are smaller than the dipolar wavenumber q_d, we observe:(i) the static susceptibility of \delta S_sw^T(q) displays the Goldstone divergence while for \delta S_z^T(q) the Ornstein-Zernicke shape fits the data with a possible indication of a thermal(mass-)renormalization at the smallest q-values, i.e. we find indications for the predicted 1/q divergence of the longitudinal susceptibility; (ii) the spin wave dispersion as predicted by the Holstein-Primakoff theory revealing q_d=0.23(1)\AA^{-1}in good agreement with previous work in the paramagnetic and ferromagnetic regime of EuS; (iii) within experimental error, the (Lorentzian) linewidths of both modes turn out to be identical with respect to the q^2-variation, the temperature independence and the absolute magnitude. Due to the linear dispersion of the spin waves they remain underdamped for q<q_d. These central results differ significantly from the well known exchange dominated critical dynamics, but are quantitatively explained in terms of dynamical scaling and existing data for T>=T_C. The available mode-mode coupling theory, which takes the dipolar interactions fully into account, describes the gross features of the linewidths but not all details of the T- and q-dependencies. PACS: 68.35.Rh, 75.40.GbComment: 10 pages, 7 figure

    Critical Dynamics of Magnets

    Get PDF
    We review our current understanding of the critical dynamics of magnets above and below the transition temperature with focus on the effects due to the dipole--dipole interaction present in all real magnets. Significant progress in our understanding of real ferromagnets in the vicinity of the critical point has been made in the last decade through improved experimental techniques and theoretical advances in taking into account realistic spin-spin interactions. We start our review with a discussion of the theoretical results for the critical dynamics based on recent renormalization group, mode coupling and spin wave theories. A detailed comparison is made of the theory with experimental results obtained by different measuring techniques, such as neutron scattering, hyperfine interaction, muon--spin--resonance, electron--spin--resonance, and magnetic relaxation, in various materials. Furthermore we discuss the effects of dipolar interaction on the critical dynamics of three--dimensional isotropic antiferromagnets and uniaxial ferromagnets. Special attention is also paid to a discussion of the consequences of dipolar anisotropies on the existence of magnetic order and the spin--wave spectrum in two--dimensional ferromagnets and antiferromagnets. We close our review with a formulation of critical dynamics in terms of nonlinear Langevin equations.Comment: Review article (154 pages, figures included

    Differentiation of benign and malignant vertebral fractures using a convolutional neural network to extract CT-based texture features.

    Get PDF
    PURPOSE To assess the diagnostic performance of three-dimensional (3D) CT-based texture features (TFs) using a convolutional neural network (CNN)-based framework to differentiate benign (osteoporotic) and malignant vertebral fractures (VFs). METHODS A total of 409 patients who underwent routine thoracolumbar spine CT at two institutions were included. VFs were categorized as benign or malignant using either biopsy or imaging follow-up of at least three months as standard of reference. Automated detection, labelling, and segmentation of the vertebrae were performed using a CNN-based framework ( https://anduin.bonescreen.de ). Eight TFs were extracted: Varianceglobal, Skewnessglobal, energy, entropy, short-run emphasis (SRE), long-run emphasis (LRE), run-length non-uniformity (RLN), and run percentage (RP). Multivariate regression models adjusted for age and sex were used to compare TFs between benign and malignant VFs. RESULTS Skewnessglobal showed a significant difference between the two groups when analyzing fractured vertebrae from T1 to L6 (benign fracture group: 0.70 [0.64-0.76]; malignant fracture group: 0.59 [0.56-0.63]; and p = 0.017), suggesting a higher skewness in benign VFs compared to malignant VFs. CONCLUSION Three-dimensional CT-based global TF skewness assessed using a CNN-based framework showed significant difference between benign and malignant thoracolumbar VFs and may therefore contribute to the clinical diagnostic work-up of patients with VFs

    An Overview of the Scala Programming Language

    Get PDF
    Scala fuses object-oriented and functional programming in a statically typed programming language. It is aimed at the construction of components and component systems. This paper gives an overview of the Scala language for readers who are familar with programming methods and programming language design

    Indirect evidence for altered dopaminergic neurotransmission in very premature‐born adults

    Get PDF
    While animal models indicate altered brain dopaminergic neurotransmission after premature birth, corresponding evidence in humans is scarce due to missing molecular imaging studies. To overcome this limitation, we studied dopaminergic neurotransmission changes in human prematurity indirectly by evaluating the spatial co‐localization of regional alterations in blood oxygenation fluctuations with the distribution of adult dopaminergic neurotransmission. The study cohort comprised 99 very premature‐born (<32 weeks of gestation and/or birth weight below 1500 g) and 107 full‐term born young adults, being assessed by resting‐state functional MRI (rs‐fMRI) and IQ testing. Normative molecular imaging dopamine neurotransmission maps were derived from independent healthy control groups. We computed the co‐localization of local (rs‐fMRI) activity alterations in premature‐born adults with respect to term‐born individuals to different measures of dopaminergic neurotransmission. We performed selectivity analyses regarding other neuromodulatory systems and MRI measures. In addition, we tested if the strength of the co‐localization is related to perinatal measures and IQ. We found selectively altered co‐localization of rs‐fMRI activity in the premature‐born cohort with dopamine‐2/3‐receptor availability in premature‐born adults. Alterations were specific for the dopaminergic system but not for the used MRI measure. The strength of the co‐localization was negatively correlated with IQ. In line with animal studies, our findings support the notion of altered dopaminergic neurotransmission in prematurity which is associated with cognitive performance

    Altered gray-to-white matter tissue contrast in preterm-born adults

    Get PDF
    Aims To investigate cortical organization in brain magnetic resonance imaging (MRI) of preterm-born adults using percent contrast of gray-to-white matter signal intensities (GWPC), which is an in vivo proxy measure for cortical microstructure. Methods Using structural MRI, we analyzed GWPC at different percentile fractions across the cortex (0%, 10%, 20%, 30%, 40%, 50%, and 60%) in a large and prospectively collected cohort of 86 very preterm-born (<32 weeks of gestation and/or birth weight <1500 g, VP/VLBW) adults and 103 full-term controls at 26 years of age. Cognitive performance was assessed by full-scale intelligence quotient (IQ) using the Wechsler Adult Intelligence Scale. Results GWPC was significantly decreased in VP/VLBW adults in frontal, parietal, and temporal associative cortices, predominantly in the right hemisphere. Differences were pronounced at 20%, 30%, and 40%, hence, in middle cortical layers. GWPC was significantly increased in right paracentral lobule in VP/VLBW adults. GWPC in frontal and temporal cortices was positively correlated with birth weight, and negatively with duration of ventilation (p < 0.05). Furthermore, GWPC in right paracentral lobule was negatively correlated with IQ (p < 0.05). Conclusions Widespread aberrant gray-to-white matter contrast suggests lastingly altered cortical microstructure after preterm birth, mainly in middle cortical layers, with differential effects on associative and primary cortices
    corecore