
An Overview of the Scala Programming Language

Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth,
Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, Matthias Zenger

École Polytechnique Fédérale de Lausanne
1015 Lausanne, Switzerland

Technical Report IC/2004/64

Abstract

Scala fuses object-oriented and functional programming in
a statically typed programming language. It is aimed at the
construction of components and component systems. This
paper gives an overview of the Scala language for readers
who are familar with programming methods and program-
ming language design.

1 Introduction

True component systems have been an elusive goal of the
software industry. Ideally, software should be assembled
from libraries of pre-written components, just as hardware is
assembled from pre-fabricated chips. In reality, large parts
of software applications are written �from scratch�, so that
software production is still more a craft than an industry.

Components in this sense are simply software parts which
are used in some way by larger parts or whole applications.
Components can take many forms; they can be modules,
classes, libraries, frameworks, processes, or web services.
Their size might range from a couple of lines to hundreds of
thousands of lines. They might be linked with other compo-
nents by a variety of mechanisms, such as aggregation, pa-
rameterization, inheritance, remote invocation, or message
passing.

We argue that, at least to some extent, the lack of
progress in component software is due to shortcomings in the
programming languages used to de�ne and integrate compo-
nents. Most existing languages o�er only limited support for
component abstraction and composition. This holds in par-
ticular for statically typed languages such as Java and C#
in which much of today's component software is written.

Scala has been developed between 2001 and 2004 in the
programming methods laboratory at EPFL. It stems from a
research e�ort to develop better language support for com-
ponent software. There are two hypotheses that we would
like to validate with the Scala experiment. First, we postu-
late that a programming language for component software
needs to be scalable in the sense that the same concepts can
describe small as well as large parts. Therefore, we con-
centrate on mechanisms for abstraction, composition, and
decomposition rather than adding a large set of primitives
which might be useful for components at some level of scale,
but not at other levels. Second, we postulate that scalable
support for components can be provided by a programming

language which uni�es and generalizes object-oriented and
functional programming. For statically typed languages, of
which Scala is an instance, these two paradigms were up to
now largely separate.

To validate our hypotheses, Scala needs to be applied
in the design of components and component systems. Only
serious application by a user community can tell whether the
concepts embodied in the language really help in the design
of component software. To ease adoption by users, the new
language needs to integrate well with existing platforms and
components. Scala has been designed to work well with
Java and C#. It adopts a large part of the syntax and type
systems of these languages. At the same time, progress can
sometimes only be achieved by throwing over board some
existing conventions. This is why Scala is not a superset of
Java. Some features are missing, others are re-interpreted
to provide better uniformity of concepts.

While Scala's syntax is intentionally conventional, its
type system breaks new ground in at least three areas. First,
abstract type de�ninitions and path-dependent types apply
the νObj calculus [35] to a concrete language design. Sec-
ond, symmetric mixin composition combines the advantages
of mixins and traits. Third, views enable component adap-
tation in a modular way.

The rest of this paper gives an overview of Scala. It
expands on the following key aspects of the language:

� Scala programs resemble Java programs in many ways
and they can seamlessly interact with code written in
Java (Section 2).

� Scala has a uniform object model, in the sense that
every value is an object and every operation is a method
call (Section 3).

� Scala is also a functional language in the sense that
functions are �rst-class values (Section 4).

� Scala has uniform and powerful abstraction concepts
for both types and values (Section 5).

� It has �exible symmetric mixin-composition constructs
for composing classes and traits (Section 6).

� It allows decomposition of objects by pattern matching
(Section 7).

� Patterns and expressions are generalized to support the
natural treatment of XML documents (Section 8).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902789?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

// Java
class PrintOptions {
public static void main(String[] args) {
System.out.println("Options selected:");
for (int i = 0; i < args.length; i++)
if (args[i].startsWith("-"))
System.out.println(" "+args[i].substring(1));

}
}

// Scala
object PrintOptions {
def main(args: Array[String]): unit = {
System.out.println("Options selected:");
for (val arg <- args)
if (arg.startsWith("-"))
System.out.println(" "+arg.substring(1));

}
}

Listing 1: A simple program in Java and Scala.

� Taken together, these constructs make it easy to ex-
press autonomous components using Scala libraries
without need for special language constructs (Sec-
tion 9).

� Scala allows external extensions of components using
views (Section 10).

� Scala is currently implemented on the Java (Section 11)
and .NET (Section 12) platforms.

Section 13 discusses related work and Section 14 concludes.

2 A Java-Like Language

Scala is designed to interact well with mainstream platforms
such as Java or C#. It shares with these languages most of
the basic operators, data types, and control structures.

For simplicity, we compare Scala in the following only
with Java. But since Java and C# have themselves much
in common, almost all similarities with Java carry over to
C#. Sometimes, Scala is even closer to C# than to Java,
for instance in its treatment of genericity.

Listing 1 shows a simple program in Java and Scala. The
program prints out all options included in the program's
command line. The example shows many similarities. Both
languages use the same primitive class String, calling the
same methods. They also use the same operators and the
same conditional control construct. The example also shows
some di�erences between the two languages. In particular:

� Scala has object de�nitions (starting with object) be-
sides class de�nitions. An object de�nition de�nes a
class with a single instance � this is sometimes called
a singleton object. In the example above, the singleton
object PrintOptions has main as a member function.

� Scala uses the id : type syntax for de�nitions and pa-
rameters whereas Java uses pre�x types, i.e. type id.

� Scala's syntax is more regular than Java's in that all
de�nitions start with a keyword. In the example above,
def main starts a method de�nition.

� Scala does not have special syntax for array types and
array accesses. An array with elements of type T is
written Array[T]. Here, Array is a standard class and
[T] is a type parameter. In fact, arrays in Scala inherit
from functions1. This is why array accesses are written
like function applications a(i), instead of Java's a[i].

� The return type of main is written unit whereas Java
uses void. This stems from the fact that there is no dis-
tinction in Scala between statements and expressions.
Every function returns a value. If the function's right
hand side is a block, the evaluation of its last expression
is returned as result. The result might be the trivial
value {} whose type is unit. Familar control constructs
such as if-then-else are also generalized to expressions.

� Scala adopts most of Java's control structures, but it
lacks Java's traditional for-statement. Instead, there
are for-comprehensions which allow one to iterate di-
rectly over the elements of an array (or list, or iter-
ator, ...) without the need for indexing. The new
Java 1.5 also has a notion of �extended for-loop� which
is similar to, but more restrictive than, Scala's for-
comprehensions.

Even though their syntax is di�erent, Scala programs can
inter-operate without problems with Java programs. In
the example above, the Scala program invokes methods
startsWith and substring of String, which is a class de-
�ned in Java. It also accesses the static out �eld of the Java
class System, and invokes its (overloaded) println method.
This is possible even though Scala does not have a concept
of static class members. In fact, every Java class is seen in
Scala as two entities, a class containing all dynamic mem-
bers and a singleton object, containing all static members.
Hence, System.out is accessible in Scala as a member of the
object System.

Even though it is not shown in the example, Scala classes
and objects can also inherit from Java classes and implement
Java interfaces. This makes it possible to use Scala code in
a Java framework. For instance, a Scala class might be de-
�ned to implement the interface java.util.EventListener.
Instances of that class may then be noti�ed of events issued
by Java code.

3 A Uni�ed Object Model

Scala uses a pure object-oriented model similar to
Smalltalk's: Every value is an object and every operation
is a message send.

3.1 Classes

Figure 3.1 illustrates Scala's class hierarchy. Every class in
Scala inherits from class Scala.Any. Subclasses of Any fall
into two categories: the value classes which inherit from
scala.AnyVal and the reference classes which inherit from
scala.AnyRef. Every primitive Java type name corresponds
to a value class, and is mapped to it by a prede�ned type
alias. In a Java environment, AnyRef is identi�ed with the
root class java.lang.Object. An instance of a reference
class is usually implemented as a pointer to an object stored
in the program heap. An instance of a value class is usually
represented directly, without indirection through a pointer.

1Arrays are further explained in Section 4.3.

2

Sometimes it is necessary to convert between the two repre-
sentations, for example when an instance of a value class is
seen as an instance of the root class Any. These boxing con-
versions and their inverses are done automatically, without
explicit programmer code.

Note that the value class space is �at; all value classes
are subtypes from scala.AnyVal, but they do not subtype
each other. Instead there are views (i.e. standard coercions,
see Section 10) between elements of di�erent value classes.
We considered a design alternative with subtyping between
value classes. For instance, we could have made Int a sub-
type of Float, instead of having a standard coercion from
Int to Float. We refrained from following this alternative,
because we want to maintain the invariant that interpreting
a value of a subclass as an instance of its superclass does not
change the value's representation. Among other things, we
want to guarantee that for each pair of types S <: T and
each instance x of S the following equality holds2:

x.asInstanceOf[T].asInstanceOf[S] = x

At the bottom of the type hierarchy are the two classes
scala.AllRef and scala.All. Type AllRef is a subtype of
all reference types; its only instance is the null reference.
Since AllRef is not a subtype of value types, null is not a
member of any such type. For instance, it is not possible to
assign null to a variable of type int.

Type All is a subtype of every other type; there exist no
instances of this type. Even though type All is empty, it is
nevertheless useful as a type parameter. For instance, the
Scala library de�nes a value Nil of type List[All]. Because
lists are covariant in Scala, this makes Nil an instance of
List[T], for any element type T .

The equality operation == between values is designed to
be transparent with respect to the type's representation. For
value types, it is the natural (numeric or boolean) equality.
For reference types, == is treated as an alias of the equals
method from java.lang.Object. That method is originally
de�ned as reference equality, but is meant to be overridden
in subclasses to implement the natural notion of equality for
these subclasses. For instance, the boxed versions of value
types would implement an equals method which compares
the boxed values. By contrast, in Java, == always means ref-
erence equality on reference types. While this is a bit more
e�cient to implement, it also introduces a serious coherence
problem because boxed versions of equal values might no
longer be equal (with respect to ==).

Some situations require reference equality instead of
user-de�ned equality. An example is hash-consing, where
e�ciency is paramount. For these cases, class AnyRef de-
�nes an additional eq method, which cannot be overridden,
and is implemented as reference equality (i.e., it behaves like
== in Java for reference types).

3.2 Operations

Another aspect of Scala's uni�ed object model is that ev-
ery operation is a message send, that is, the invocation of
a method. For instance the addition x + y is interpreted as
x.+(y), i.e. the invocation of the method + with x as the
receiver object and y as the method argument. This idea,
which has been applied originally in Smalltalk, is adapted
to the more conventional syntax of Scala as follows. First,

2asInstanceOf is Scala's standard �type cast� method de�ned in the
root class Any.

Scala treats operator names as ordinary identi�ers. More
precisely, an identi�er is either a sequence of letters and
digits starting with a letter, or a sequence of operator char-
acters. Hence, it is possible to de�ne methods called +, <=,
or ::, for example. Next, Scala treats every occurrence of
an identi�er between two expressions as a method call. For
instance, in Listing 1, one could have used the operator syn-
tax (arg startsWith "-") as syntactic sugar for the more
conventional syntax (arg.startsWith("-")).

As an example how user-de�ned operators are declared
and applied, consider the following implementation of a
class Nat for natural numbers. This class (very ine�-
ciently) represents numbers as instances of two classes Zero
and Succ. The number N would hence be represented as
new SuccN(Zero). We start the implementation with a trait
specifying the interface of natural numbers. For now, traits
can be seen as abstract classes; details are given later in
Section 6.2. According to the de�nition of trait Nat, natural
numbers provide two abstract methods isZero, and pred, as
well as three concrete methods succ, +, and -.

trait Nat {
def isZero: boolean;
def pred: Nat;
def succ: Nat = new Succ(this);
def + (x: Nat): Nat =
if (x.isZero) this else succ + x.pred;

def - (x: Nat): Nat =
if (x.isZero) this else pred - x.pred;

}

Note that Scala allows one to de�ne parameterless methods
such as isZero, pred, and succ in class Nat. Such methods
are invoked every time their name is selected; no argument
list is passed. Note also that abstract class members are
identi�ed syntactically because they lack a de�nition; no
additional abstract modi�er is needed for them.

We now extend trait Nat with a singleton object Zero
and a class for representing successors, Succ.

object Zero extends Nat {
def isZero: boolean = true;
def pred: Nat = throw new Error("Zero.pred");

}
class Succ(n: Nat) extends Nat {
def isZero: boolean = false;
def pred: Nat = n;

}

The Succ class illustrates a di�erence between the class def-
inition syntax of Scala and Java. In Scala, constructor pa-
rameters follow the class name; no separate class constructor
de�nition within the body of Succ is needed. This construc-
tor is called the primary constructor ; the whole body of the
class is executed when the primary constructor is called at
the time the class is instantiated. There is syntax for sec-
ondary constructors in case more than one constructor is
desired (see Section 5.2.1 in [34]).

The ability to have user-de�ned in�x operators raises
the question about their relative precedence and associativ-
ity. One possibility would be to have ��xity�-declarations in
the style of Haskell or SML, where users can declare these
properties of an operator individually. However, such decla-
rations tend to interact badly with modular programming.
Scala opts for a simpler scheme with �xed precedences and
associativities. The precedence of an in�x operator is deter-

3

scala.Any

scala.AnyRef
(java.lang.Object)scala.AnyVal

scala.ScalaObject
scala.Double

scala.Float

scala.Long

scala.Int

scala.Short

scala.Byte

scala.Char

scala.Unit

scala.Boolean
scala.Iterable

scala.Symbol

scala.Ordered

… (other Scala classes)…

java.lang.String

… (other Java classes)…

scala.AllRef

scala.All

Subtype
View

scala.Seq

scala.List

Figure 1: Class hierarchy of Scala.

mined by its �rst character; it coincides with the operator
precedence of Java for those operators that start with an
operator character used in these languages. The following
lists operators in increasing precedence:

(all letters)
|
^
&
< >
= !
:
+ -
* / %
(all other special characters)

Operators are usually left-associative, i.e. x + y + z is
interpreted as (x + y) + z. The only exception to that
rule are operators ending in a colon. These are treated as
right-associative. An example is the list-consing operator
::. Here, x :: y :: zs is interpreted as x :: (y :: zs).
Right-associative operators are also treated di�erently with
respect to method lookup. Whereas normal operators take
their left operand as receiver, right-associative operators
take their right operand as receiver. For instance, the list
consing sequence x :: y :: zs is treated as equivalent to
zs.::(y).::(x). In fact, :: is implemented as a method in
Scala's List class, which pre�xes a given argument to the
receiver list and returns the resulting list as result.

Some operators in Scala do not always evaluate their ar-
gument; examples are the standard boolean operator && and

||. Such operators can also be represented as methods be-
cause Scala allows to pass arguments by name. For instance,
here is a user-de�ned trait Bool that mimics the pre-de�ned
booleans.

trait Bool {
def && (def x: Bool): Bool;
def || (def x: Bool): Bool;

}

In this trait, the formal parameter of methods || and && is
pre�xed by def. The actual arguments for these parameters
are passed in unevaluated form. The arguments are eval-
uated every time the formal parameter name is mentioned
(that is, the formal parameter behaves like a parameterless
function).

Here are the two canonical instances of class Bool:

object False extends Bool {
def && (def x: Bool): Bool = this;
def || (def x: Bool): Bool = x;

}
object True extends Bool {
def && (def x: Bool): Bool = x;
def || (def x: Bool): Bool = this;

}

As can be seen in these implementations, the right operand
of a && (resp. ||) operation is evaluated only if the left
operand is the True (False) object.

As the examples in this section show, it is possible in
Scala to de�ne every operator as a method and treat every

4

operation as an invocation of a method. In the interest of
e�ciency, the Scala compiler translates operations on value
types directly to primitive instruction codes; this, however,
is completely transparent to the programmer.

3.3 Variables and Properties

If every operation is a method invocation in Scala, what
about variable dereferencing and assignment? In fact, when
acting on class members these operations are also treated as
method calls. For every de�nition of a variable var x: T in
a class, Scala de�nes setter and getter methods as follows.

def x: T;
def x_= (newval: T): unit;

These methods reference and update a mutable memory cell,
which is not accessible directly to Scala programs. Every
mention of the name x in an expression is then a call to the
parameterless method x. Furthermore, every assignment
x = e is interpreted as a method invocation x_=(e).

The treatment of variable accesses as method calls makes
it possible to de�ne properties (in the C# sense) in Scala.
For instance, the following class Celsius de�nes a property
degree which can be set only to values greater or equal than
-273.

class Celsius {
private var d: int = 0;
def degree: int = d;
def degree_=(x: int): unit = if (x >= -273) d = x

}

Clients can use the pair of methods de�ned by class Celsius
as if it de�ned a variable:

val c = new Celsius; c.degree = c.degree - 1

4 Operations Are Objects

Scala is a functional language in the sense that every func-
tion is a value. It provides a lightweight syntax for the
de�nition of anonymous and curried functions, and it also
supports nested functions.

4.1 Methods are Functional Values

To illustrate the use of functions as values, consider a func-
tion exists that tests whether a given array has an element
which satis�es a given predicate:

def exists[T](xs: Array[T], p: T => boolean) = {
var i: int = 0;
while (i < xs.length && !p(xs(i))) i = i + 1;
i < xs.length

}

The element type of the array is arbitrary; this is expressed
by the type parameter [T] of method exists (type param-
eters are further explained in Section 5.1). The predicate
to test is also arbitrary; this is expressed by the parame-
ter p of method exists. The type of p is the function type
T => boolean, which has as values all functions with domain
T and range boolean. Function parameters can be applied
just as normal functions; an example is the application of
p in the condition of the while-loop. Functions which take

functions as arguments, or return them as results, are called
higher-order functions.

Once we have a function exists, we can use it to de�ne
a function forall by double negation: a predicate holds for
all values of an array if there does not exist an element for
which the predicate does not hold. This is expressed by the
following function forall:

def forall[T](xs: Array[T], p: T => boolean) = {
def not_p(x: T) = !p(x);
!exists(xs, not_p)

}

The function forall de�nes a nested function not_p which
negates the parameter predicate p. Nested functions can
access parameters and local variables de�ned in their en-
vironment; for instance not_p accesses forall's parameter
p.

It is also possible to de�ne a function without giving it a
name; this is used in the following shorter version of forall:

def forall[T](xs: Array[T], p: T => boolean) =
!exists(xs, x: T => !p(x));

Here, x: T => !p(x) de�nes an anonymous function which
maps its parameter x of type T to !p(x).

Using exists and forall, we can de�ne a function
hasZeroRow, which tests whether a given two-dimensional
integer matrix has a row consisting of only zeros.

def hasZeroRow(matrix: Array[Array[int]]) =
exists(matrix, row: Array[int] => forall(row, 0 ==));

The expression forall(row, 0 ==) tests whether row con-
sists only of zeros. Here, the == method of the number 0 is
passed as argument corresponding to the predicate parame-
ter p. This illustrates that methods can themselves be used
as values in Scala; it is similar to the �delegates� concept in
C#.

4.2 Functions are Objects

If methods are values, and values are objects, it follows
that methods themselves are objects. In fact, the syn-
tax of function types and values is just syntactic sugar
for certain class types and class instances. The function
type S => T is equivalent to the parameterized class type
scala.Function1[S, T], which is de�ned as follows in the
standard Scala library:

package scala;
trait Function1[-S, +T] {
def apply(x: S): T

}

Analogous conventions exist for functions with more
than one argument. In general, the n-ary func-
tion type, (T1, T2, ..., Tn) => T is interpreted as
Functionn[T1, T2, ..., Tn, T]. Hence, functions are in-
terpreted as objects with apply methods. For example, the
anonymous �incrementer� function x: int => x + 1 would
be expanded to an instance of Function1 as follows.

new Function1[int, int] {
def apply(x: int): int = x + 1

}

5

Conversely, when a value of a function type is applied to
some arguments, the type's apply method is implicitly in-
serted. E.g. for p of type Function1[S, T], the application
p(x) is expanded to p.apply(x).

4.3 Re�ning Functions

Since function types are classes in Scala, they can be fur-
ther re�ned in subclasses. An example are arrays, which are
treated as special functions over the integer domain. Class
Array[T] inherits from Function1[int, T], and adds meth-
ods for array update and array length, among others:

package scala;
class Array[T] extends Function1[int, T] {
def apply(index: int): T = ...;
def update(index: int, elem: T): unit= ...;
def length: int = ...;
def exists(p: T => boolean): boolean = ...;
def forall(p: T => boolean): boolean = ...;
...

}

Special syntax exists for function applications appearing on
the left-hand side of an assignment; these are interpreted as
applications of an update method. For instance, the assign-
ment a(i) = a(i) + 1 is interpreted as

a.update(i, a.apply(i) + 1) .

The interpretation of array accesses as function applications
might seem costly. However, inlining transformations in the
Scala compiler transform code such as the one above to prim-
itive array accesses in the host system.

The above de�nition of the Array class also lists methods
exists and forall. Hence, it would not have been necessary
to de�ne these operations by hand. Using the methods in
class Array, the hasZeroRow function can also be written as
follows.

def hasZeroRow(matrix: Array[Array[int]]) =
matrix exists (row => row forall (0 ==));

Note the close correspondence of this code to a verbal spec-
i�cation of the task: �test whether in the matrix there exists
a row such that in the row all elements are zeroes�. Note
also that we left out the type of the row parameter in the
anonymous function. This type can be inferred by the Scala
compiler from the type of matrix.exists.

4.4 Sequences

Higher-order methods are very common when processing se-
quences. Scala's library de�nes several di�erent kinds of se-
quences including lists, streams, and iterators. All sequence
types inherit from trait scala.Seq; and they all de�ne a set
of methods which streamlines common processing tasks. For
instance, the map method applies a given function uniformly
to all sequence elements, yielding a sequence of the function
results. Another example is the filter method, which ap-
plies a given predicate function to all sequence elements and
returns a sequence of those elements for which the predicate
is true.

The application of these two functions is illustrated in
the following function, sqrts, which takes a list xs of double
precision numbers, and returns a list consisting of the square
roots of all non-negative elements of xs.

def sqrts(xs: List[double]): List[double] =
xs filter (0 <=) map Math.sqrt;

Note that Math.sqrt comes from a Java class. Such methods
can be passed to higher-order functions in the same way as
methods de�ned in Scala.

4.5 For Comprehensions

Scala o�ers special syntax to express combinations of cer-
tain higher-order functions more naturally. For comprehen-
sions are a generalization of list comprehensions found in
languages like Haskell. With a for comprehension the sqrts
function can be written as follows:

def sqrts(xs: List[double]): List[double] =
for (val x <- xs; 0 <= x) yield Math.sqrt;

Here, val x <- xs is a generator, which produces a sequence
of values, and 0 <= x is a �lter, which eliminates some of
the produced values from consideration. The comprehension
returns another sequence formed from the values produced
by the yield part. There can be several generators and
�lters in a comprehension.

For comprehensions are mapped to combinations involv-
ing the higher-order methods map, flatMap, and filter. For
instance, the formulation of the sqrts method above would
be mapped to the previous implementation of sqrts in Sec-
tion 4.4.

The power of for comprehensions comes from the fact
that they are not tied to a particular data type. They
can be constructed over any carrier type that de�nes ap-
propriate map, flatMap, and filter methods. This includes
all sequence types3, optional values, database interfaces, as
well as several other types. Scala users might apply for-
comprehensions to their own types, as long as these de�ne
the required methods.

For loops are similar to comprehensions in Scala.
They are mapped to combinations involving methods
foreach and filter. For instance, the for loop
for (val arg <- args) ... in Listing 1 is mapped to

args foreach (arg => ...)

5 Abstraction

An important issue in component systems is how to abstract
from required components. There are two principal forms
of abstraction in programming languages: parameterization
and abstract members. The �rst form is typically functional
whereas the second form is typically object-oriented. Tra-
ditionally, Java supported functional abstraction for values
and object-oriented abstraction for operations. The new
Java 1.5 with generics supports functional abstraction also
for types.

Scala supports both styles of abstraction uniformly for
types as well as values. Both types and values can be pa-
rameters, and both can be abstract members. The rest of
this section presents both styles and reviews at the same
time a large part of Scala's type system.

3Arrays do not yet de�ne all of sequence methods, because some
of them require run-time types, which are not yet implemented

6

5.1 Functional Abstraction

The following class de�nes cells of values that can be read
and written.

class GenCell[T](init: T) {
private var value: T = init;
def get: T = value;
def set(x: T): unit = { value = x }

}

The class abstracts over the value type of the cell with the
type parameter T. We also say, class GenCell is generic.

Like classes, methods can also have type parameters.
The following method swaps the contents of two cells, which
must both have the same value type.

def swap[T](x: GenCell[T], y: GenCell[T]): unit = {
val t = x.get; x.set(y.get); y.set(t)

}

The following program creates two cells of integers and then
swaps their contents.

val x: GenCell[int] = new GenCell[int](1);
val y: GenCell[int] = new GenCell[int](2);
swap[int](x, y)

Actual type arguments are written in square brackets; they
replace the formal parameters of a class constructor or
method. Scala de�nes a sophisticated type inference sys-
tem which permits to omit actual type arguments in both
cases. Type arguments of a method or constructor are in-
ferred from the expected result type and the argument types
by local type inference [40, 38]. Hence, one can equivalently
write the example above without any type arguments:

val x = new GenCell(1);
val y = new GenCell(2);
swap(x, y)

Parameter bounds. Consider a method updateMax which
sets a cell to the maximum of the cell's current value and a
given parameter value. We would like to de�ne updateMax so
that it works for all cell value types which admit a compar-
ison function �<� de�ned in trait Ordered. For the moment
assume this trait is de�ned as follows (a more re�ned version
of this trait is in the standard Scala library).

trait Ordered[T] {
def < (x: T): boolean;

}

The updateMax method can be de�ned in a generic way by
using bounded polymorphism:

def updateMax[T <: Ordered[T]](c: GenCell[T], x: T) =
if (c.get < x) c.set(x)

Here, the type parameter clause [T <: Ordered[T]] intro-
duces a bounded type parameter T. It restricts the type
arguments for T to those types T that are a subtype of
Ordered[T]. Therefore, the < method of class Ordered can
be applied to arguments of type T. The example shows that
the bounded type parameter may itself appear as part of the
bound, i.e. Scala supports F-bounded polymorphism [10].

Variance. The combination of subtyping and generics in
a language raises the question how they interact. If C is
a type constructor and S is a subtype of T , does one also
have that C[S] is a subtype of C[T]? Type constructors with
this property are called covariant. The type constructor
GenCell should clearly not be covariant; otherwise one could
construct the following program which leads to a type error
at run time.

val x: GenCell[String] = new GenCell[String];
val y: GenCell[Any] = x; // illegal!
y.set(1);
val z: String = y.get

It is the presence of a mutable variable in GenCell which
makes covariance unsound. Indeed, a GenCell[String] is
not a special instance of a GenCell[Any] since there are
things one can do with a GenCell[Any] that one cannot do
with a GenCell[String]; set it to an integer value, for in-
stance.

On the other hand, for immutable data structures, co-
variance of constructors is sound and very natural. For in-
stance, an immutable list of integers can be naturally seen
as a special case of a list of Any. There are also cases where
contravariance of parameters is desirable. An example are
output channels Chan[T], with a write operation that takes
a parameter of the type parameter T. Here one would like
to have Chan[S] <: Chan[T] whenever T <: S.

Scala allows to declare the variance of the type parame-
ters of a class using plus or minus signs. A �+� in front of a
parameter name indicates that the constructor is covariant
in the parameter, a �−� indicates that it is contravariant,
and a missing pre�x indicates that it is non-variant.

For instance, the following trait GenList de�nes a simple
covariant list with methods isEmpty, head, and tail.

trait GenList[+T] {
def isEmpty: boolean;
def head: T;
def tail: GenList[T]

}

Scala's type system ensures that variance annotations are
sound by keeping track of the positions where a type pa-
rameter is used. These positions are classi�ed as covariant
for the types of immutable �elds and method results, and
contravariant for method argument types and upper type
parameter bounds. Type arguments to a non-variant type
parameter are always in non-variant position. The position
�ips between contra- and co-variant inside a type argument
that corresponds to a contravariant parameter. The type
system enforces that covariant (respectively, contravariant)
type parameters are only used in covariant (contravariant)
positions.

Here are two implementations of the GenList class:

object Empty extends GenList[All] {
def isEmpty: boolean = true;
def head: All = throw new Error("Empty.head");
def tail: List[All] = throw new Error("Empty.tail");

}
class Cons[+T](x: T, xs: GenList[T])

extends GenList[T] {
def isEmpty: boolean = false;
def head: T = x;
def tail: GenList[T] = xs

7

}

Note that the Empty object represents the empty list for all
element types. Covariance makes this possible, since Empty's
type, GenList[All] is a subtype of GenList[T], for any el-
ement type T .

Binary methods and lower bounds. So far, we have
associated covariance with immutable data structures. In
fact, this is not quite correct, because of binary methods. For
instance, consider adding a prepend method to the GenList
trait. The most natural de�nition of this method takes an
argument of the list element type:

trait GenList[+T] { ...
def prepend(x: T): GenList[T] = // illegal!
new Cons(x, this)

}

However, this is not type-correct, since now the type param-
eter T appears in contravariant position inside trait GenList.
Therefore, it may not be marked as covariant. This is a pity
since conceptually immutable lists should be covariant in
their element type. The problem can be solved by general-
izing prepend using a lower bound:

trait GenList[+T] { ...
def prepend[S >: T](x: S): GenList[S] = // OK
new Cons(x, this)

}

prepend is now a polymorphic method which takes an ar-
gument of some supertype S of the list element type, T.
It returns a list with elements of that supertype. The
new method de�nition is legal for covariant lists since
lower bounds are classi�ed as covariant positions; hence the
type parameter T now appears only covariantly inside trait
GenList.

It is possible to combine upper and lower bounds in the
declaration of a type parameter. An example is the following
method less of class GenList which compares the receiver
list and the argument list.

trait GenList[+T] { ...
def less[S >: T <: Ordered[S]](that: List[S]) =
!that.isEmpty &&
(this.isEmpty ||
this.head < that.head ||
this.head == that.head &&
this.tail less that.tail)

}

The method's type parameter S is bounded from below by
the list element type T and is also bounded from above by
Ordered[S]. The lower bound is necessary to maintain co-
variance of GenList. The upper bound is needed to ensure
that the list elements can be compared with the < operation.

Comparison with wildcards. Java 1.5 also has a way to
annotate variances which is based on wildcards [43]. The
scheme is essentially a syntactic variant of Igarashi and Vi-
roli's variant parametric types [26]. Unlike in Scala, in Java
1.5 annotations apply to type expressions instead of type
declarations. As an example, covariant generic lists could be
expressed by writing every occurrence of the GenList type
to match the form GenList<? extends T>. Such a type ex-

pression denotes instances of type GenList where the type
argument is an arbitrary subtype of T .

Covariant wildcards can be used in every type expression;
however, members where the type variable does not appear
in covariant position are then �forgotten� in the type. This
is necessary for maintaining type soundness. For instance,
the type GenCell<? extends Number> would have just the
single member get of type Number, whereas the set method,
in which GenCell’s type parameter occurs contravariantly,
would be forgotten.

In an earlier version of Scala we also experimented with
usage-site variance annotations similar to wildcards. At
�rst-sight, this scheme is attractive because of its �exibility.
A single class might have covariant as well as non-variant
fragments; the user chooses between the two by placing
or omitting wildcards. However, this increased �exibility
comes at price, since it is now the user of a class instead of
its designer who has to make sure that variance annotations
are used consistently. We found that in practice it was quite
di�cult to achieve consistency of usage-site type annota-
tions, so that type errors were not uncommon. By contrast,
declaration-site annotations proved to be a great help in
getting the design of a class right; for instance they provide
excellent guidance on which methods should be generalized
with lower bounds. Furthermore, Scala's mixin composi-
tion (see Section 6) makes it relatively easy to factor classes
into covariant and non-variant fragments explicitly; in Java's
single inheritance scheme with interfaces this would be ad-
mittedly much more cumbersome. For these reasons, later
versions of Scala switched from usage-site to declaration-site
variance annotations.

5.2 Abstract Members

Object-oriented abstraction can be used in Scala as an al-
ternative to functional abstraction. For instance, here is a
version of the �cell� type using object-oriented abstraction.

abstract class AbsCell {
type T;
val init: T;
private var value: T = init;
def get: T = value;
def set(x: T): unit = { value = x }

}

The AbsCell class de�nes neither type nor value parameters.
Instead it has an abstract type member T and an abstract
value member init. Instances of that class can be created
by implementing these abstract members with concrete def-
initions. For instance:

val cell = new AbsCell { type T = int; val init = 1 }
cell.set(cell.get * 2)

The type of cell is AbsCell { type T = int }. Here,
the class type AbsCell is augmented by the re�nement
{ type T = int }. This makes the type alias cell.T = int
known to code accessing the cell value. Therefore, type-
speci�c operations such as the one below are legal.

cell.set(cell.get * 2)

Path-dependent types. It is also possible to access
AbsCell without knowing the binding of its type member.

8

For instance, the following method resets a given cell to its
initial value, independently of its value type.

def reset(c: AbsCell): unit = c.set(c.init);

Why does this work? In the example above, the expres-
sion c.init has type c.T, and the method c.set has type
c.T => unit. Since the formal parameter type and the ar-
gument type coincide, the method call is type-correct.

c.T is an instance of a path-dependent type. In gen-
eral, such a type has the form x1.xn.t, where n > 0,
x1, . . . , xn denote immutable values and t is a type member
of xn. Path-dependent types are a novel concept of Scala;
their theoretical foundation is provided by the νObj calculus
[35].

Path-dependent types rely on the immutability of the
pre�x path. Here is an example where this immutability is
violated.

var flip = false;
def f(): AbsCell = {
flip = !flip;
if (flip) new AbsCell { type T = int; val init = 1 }
else new AbsCell { type T = String; val init = "" }

}
f().set(f().get) // illegal!

In this example subsequent calls to f() return cells where
the value type is alternatingly int and String. The last
statement in the code above is erroneous since it tries to
set an int cell to a String value. The type system does
not admit this statement, because the computed type of
f().get would be f().T. This type is not well-formed, since
the method call f() is not a path.

Type selection and singleton types. In Java, where
classes can also be nested, the type of a nested class is
denoted by pre�xing it with the name of the outer class.
In Scala, this type is also expressible, in the form of
Outer # Inner, where Outer is the name of the outer class
in which class Inner is de�ned. The �#� operator denotes
a type selection. Note that this is conceptually di�erent
from a path dependent type p.Inner, where the path p de-
notes a value, not a type. Consequently, the type expression
Outer # t is not well-formed if t is an abstract type de�ned
in Outer.

In fact, path dependent types in Scala can be expanded
to type selections. The path dependent type p.t is taken as a
shorthand for p.type # t. Here, p.type is a singleton type,
which represents just the object denoted by p. Singleton
types by themselves are also useful for supporting chaining
of method calls. For instance, consider a class C with a
method incr which increments a protected integer �eld, and
a subclass D of C which adds a decr method to decrement
that �eld.

class C {
protected var x = 0;
def incr: this.type = { x = x + 1; this }

}
class D extends C {
def decr: this.type = { x = x - 1; this }

}

Then we can chain calls to the incr and decr method, as in

val d = new D; d.incr.decr;

Without the singleton type this.type, this would not have
been possible, since d.incr would be of type C, which does
not have a decr member. In that sense, this.type is similar
to (covariant uses of) Kim Bruce's mytype [9].

Family polymorphism and self types. Scala's abstract
type concept is particularly well suited for modeling fami-
lies of types which vary together covariantly. This concept
has been called family polymorphism. As an example, con-
sider the publish/subscribe design pattern. There are two
classes of participants � subjects and observers. Subjects de-
�ne a method subscribe by which observers register. They
also de�ne a publish method which noti�es all registered
observers. Noti�cation is done by calling a method notify
which is de�ned by all observers. Typically, publish is called
when the state of a subject changes. There can be several
observers associated with a subject, and an observer might
observe several subjects. The subscribe method takes the
identity of the registering observer as parameter, whereas an
observer's notify method takes the subject that did the no-
ti�cation as parameter. Hence, subjects and observers refer
to each other in their method signatures.

All elements of this design pattern are captured in the
following system.

trait SubjectObserver {
type S <: Subject;
type O <: Observer;
abstract class Subject: S {
private var observers: List[O] = List();
def subscribe(obs: O) =
observers = obs :: observers;

def publish =
for (val obs <- observers) obs.notify(this);

}
trait Observer {
def notify(sub: S): unit;

}
}

The top-level trait SubjectObserver has two member
classes: one for subjects, the other for observers. The
Subject class de�nes methods subscribe and publish. It
maintains a list of all registered observers in the private
variable observers. The Observer trait only declares an
abstract method notify.

Note that the Subject and Observer classes do not di-
rectly refer to each other, since such �hard� references would
prevent covariant extensions of these classes in client code.
Instead, SubjectObserver de�nes two abstract types S and
O which are bounded by the respective class types Subject
and Observer. The subject and observer classes use these
abstract types to refer to each other.

Note also that class Subject carries an explicit type an-
notation:

class Subject: S { ...

Here, S is called a self-type of class Subject. When a self-
type is given, it is taken as the type of this inside the class
(without a self-type annotation the type of this is taken as
usual to be the type of the class itself). In class Subject, the
self-type is necessary to render the call obs.notify(this)
type-correct.

Self-types can be arbitrary; they need not have a rela-
tion with the class being de�ned. Type soundness is still

9

guaranteed, because of two requirements: (1) the self-type
of a class must be a subtype of the self-types of all its base
classes, (2) when instantiating a class in a new expression,
it is checked that the self type of the class is a supertype of
the type of the object being created.

Self-types were �rst introduced in the νObj calculus.
They are relatively infrequently used in Scala programs, but
they are nevertheless essential in situations where family
polymorphism is combined with explicit references to this.

The mechanism de�ned in the publish/subscribe pattern
can be used by inheriting from SubjectObserver, de�ning
application speci�c Subject and Observer classes. An ex-
ample is the SensorReader object below that takes sensors
as subjects and displays as observers.

object SensorReader extends SubjectObserver {
type S = Sensor;
type O = Display;
abstract class Sensor extends Subject {
val label: String;
var value: double = 0.0;
def changeValue(v: double) = {
value = v;
publish;

}
}
abstract class Display extends Observer {
def println(s: String) = ...
def notify(sub: Sensor) =
println(sub.label + " has value " + sub.value);

}
}

In this object, type S is bound to Sensor whereas type O is
bound to Display. Hence, the two formerly abstract types
are now de�ned by overriding de�nitions. This �tying the
knot� is always necessary when creating a concrete class in-
stance. On the other hand, it would also have been possible
to de�ne an abstract SensorReader class which could be re-
�ned further by client code. In this case, the two abstract
types would have been overridden again by abstract type
de�nitions.

class AbsSensorReader extends SubjectObserver {
type S <: Sensor;
type O <: Display;
...

}

The following program illustrates how the SensorReader ob-
ject is used.

object Test {
import SensorReader._;
val s1 = new Sensor { val label = "sensor1" }
val s2 = new Sensor { val label = "sensor2" }
def main(args: Array[String]) = {
val d1 = new Display; val d2 = new Display;
s1.subscribe(d1); s1.subscribe(d2);
s2.subscribe(d1);
s1.changeValue(2); s2.changeValue(3);

}
}

Note the presence of an import clause, which makes the
members of object SensorReader available without pre�x
to the code in object Test. Import clauses in Scala are

more general than import clauses in Java. They can be used
anywhere, and can import members from of any object, not
just from a package.

5.3 Modeling Generics with Abstract Types

The presence of two type abstraction facilities in one lan-
guage raises the question of language complexity � could we
have done with just one formalism? In this section we show
that functional type abstraction (aka generics) can indeed be
modeled by object-oriented type abstraction (aka abstract
types). The idea of the encoding is as follows.

Assume you have a parameterized class C with a type
parameter t (the encoding generalizes straightforwardly to
multiple type parameters). The encoding has four parts,
which a�ect the class de�nition itself, instance creations of
the class, base class constructor calls, and type instances of
the class.

1. The class de�nition of C is re-written as follows.

class C {
type t;
/* rest of class */

}

That is, parameters of the original class are modeled
as abstract members in the encoded class. If the type
parameter t has lower and/or upper bounds, these carry
over to the abstract type de�nition in the encoding.
The variance of the type parameter does not carry over;
variances in�uence instead the formation of types (see
Point 4 below).

2. Every instance creation new C[T] with type argument
T is rewritten to:

new C { type t = T }

3. If C[T] appears as a superclass constructor, the inher-
iting class is augmented with the de�nition

type t = T

4. Every type C[T] is rewritten to one of the following
types which each augment class C with a re�nement.

C { type t = T } if t is declared non-variant,
C { type t <: T } if t is declared co-variant,
C { type t >: T } if t is declared contra-variant.

This encoding works except for possible name-con�icts.
Since the parameter name becomes a class member in the
encoding, it might clash with other members, including in-
herited members generated from parameter names in base
classes. These name con�icts can be avoided by renaming,
for instance by tagging every name with a unique number.

The presence of an encoding from one style of abstraction
to another is nice, since it reduces the conceptual complex-
ity of a language. In the case of Scala, generics become
simply �syntactic sugar� which can be eliminated by an en-
coding into abstract types. However, one could ask whether
the syntactic sugar is warranted, or whether one could have
done with just abstract types, arriving at a syntactically
smaller language. The arguments for including generics in
Scala are two-fold. First, the encoding into abstract types
is not that straightforward to do by hand. Besides the loss
in conciseness, there is also the problem of accidental name

10

con�icts between abstract type names that emulate type pa-
rameters. Second, generics and abstract types usually serve
distinct roles in Scala programs. Generics are typically used
when one needs just type instantiation, whereas abstract
types are typically used when one needs to refer to the ab-
stract type from client code. The latter arises in particular
in two situations: One might want to hide the exact de�ni-
tion of a type member from client code, to obtain a kind of
encapsulation known from SML-style module systems. Or
one might want to override the type covariantly in subclasses
to obtain family polymorphism.

Could one also go the other way, encoding abstract types
with generics? It turns out that this is much harder, and
that it requires at least a global rewriting of the program.
This was shown by studies in the domain of module sys-
tems where both kinds of abstraction are also available
[27]. Furthermore in a system with bounded polymorphism,
this rewriting might entail a quadratic expansion of type
bounds [8]. In fact, these di�culties are not surprising if one
considers the type-theoretic foundations of both systems.
Generics (without F-bounds) are expressible in System F<:

[11] whereas abstract types require systems based on depen-
dent types. The latter are generally more expressive than
the former; for instance νObj with its path-dependent types
can encode F<:.

6 Composition

6.1 Class Reuse

The reuse of existing software components for the construc-
tion of new systems has many advantages: one can expect
lower development costs due to a reduced development time,
decreased maintenance requirements, as well as increased re-
liability and consistency.

Therefore, object-oriented programming languages are
equipped with mechanisms that facilitate the reuse of ex-
isting software artifacts, like classes. This section presents
and motivates Scala's class reuse mechanisms based on the
following example program. This program de�nes a generic
class Buffer[T] for assembling sequences of elements:

class Buffer[T] {
var xs: List[T] = Nil;
def add(elem: T): Unit = xs = elem :: xs;
def elements: Iterator[T] = new BufferIterator;
class BufferIterator extends Iterator[T] {
var ys = xs;
def hasNext: Boolean = !ys.isEmpty;
def next: T = {
val res = ys.head; ys = ys.tail; res

}
}

}

The implementation of class Buffer relies on the following
iterator abstraction:

trait Iterator[T] {
def hasNext: Boolean;
def next: T;

}

Inheritance Like most mainstream object-oriented lan-
guages, Scala's primary class reuse mechanism is based on

single inheritance; i.e., programmers can specialize classes
by subclassing. To enrich class Buffer with additional meth-
ods forall and exists, we could, for instance, create a sub-
class of IterableBuffer de�ning the new functionality:

class IterableBuffer[T] extends Buffer[T] {
def forall(p: T => Boolean): Boolean = {
val it = elements; var res = true;
while (res && it.hasNext) { res = p(it.next) }
res

}
def exists(p: T => Boolean): Boolean = {
val it = elements; var res = false;
while (!res && it.hasNext) { res = p(it.next) }
res

}
}

Mixin-class composition The problem with the code
above is its limited potential for reuse. Imagine there is an
independent extension of class Buffer which models stacks:

class Stack[T] extends Buffer[T] {
def push(elem: T): Unit = add(elem);
def pop: T = { val y = xs.head; xs = xs.tail; y }

}

With single inheritance, it is impossible to reuse the existing
de�nitions of the forall and the exists methods together
with stacks. Therefore, Scala provides a mixin-class com-
position mechanism which allows programmers to reuse the
delta of a class de�nition, i.e., all new de�nitions that are not
inherited, in the de�nition of a new class. This mechanism
makes it possible to combine IterableBuffer with Stack:

class IterableStack[T] extends Stack[T]
with IterableBuffer[T];

This program de�nes a class IterableStack[T] which inher-
its all de�nitions from Stack[T] and additionally includes
the new de�nitions of IterableBuffer[T]. Mixing a class C
into another class D is legal only as long as D's superclass
is a subclass of C's superclass. Thus, the mixin compo-
sition in the program above is well-formed, since the su-
perclass of IterableStack is a subclass of the superclass of
IterableBuffer.

Scala enforces this requirement for type-safety reasons.
Since only the delta of a class is �copied� into another class
by a mixin-class composition, it could otherwise happen that
some mixed-in members refer to inherited members which
are not present in the new context, yielding a �method not
found� exception.

Ambiguities In Scala, every class inherits exactly from
one superclass and acquires class members from multiple
other classes via mixin-based class composition. Imagine for
instance the following subclass of Buffer which introduces
a method sameElements together with an internally used
forall method.

class ComparableBuffer[T] extends Buffer[T] {
def forall(p: T => Boolean): Boolean = {
val it = elements; var res = true;
while (res && it.hasNext) { res = p(it.next) }
res

}

11

def sameElements(b: IterableBuffer[T]): Boolean =
forall(elem => b.exists(elem.equals));

}

We could derive a stack class MyStack o�ering functional-
ity provided by both IterableBuffer and ComparableBuffer
by using the two classes as mixins:

class MyStack[T] extends Stack[T]
with IterableBuffer[T]
with ComparableBuffer[T]; // error!

In Scala, methods de�ned in mixins either represent new
methods or they override the respective methods in the ac-
tual superclass. As the previous example shows, it may
happen that two mixins de�ne the same method. For class
MyStack it is unclear which forall method to use. This
ambiguity constitutes a compile-time error which has to be
resolved by the programmer explicitly. A possible solution
is to introduce a new forall method which forwards the
call to the desired implementation. The following program
makes use of the super[C] primitive, which allows one to
refer to concrete de�nitions in the mixin class C:

class MyStack[T] extends Stack[T]
with IterableBuffer[T]
with ComparableBuffer[T] {

override def forall(p: T => Boolean) =
super[IterableBuffer].forall(p);

}

6.2 Traits

Besides ambiguities, another serious problem of multiple
inheritance is the diamond inheritance dilemma which ap-
pears if a class inherits from two other classes that share su-
perclasses. Without further restrictions, these superclasses
would get inherited twice in this scenario. This would lead to
a duplication of the state encapsulated by these superclasses
and therefore would result in serious consistency issues.

To avoid this, Scala allows a class to be mixed into an-
other class only if it has not been used before in the other
class as either superclass or mixin. Unfortunately, this rule
is very restrictive, ruling out many cases where inheriting
twice from the same class would not constitute a problem
� this is the case in particular for classes that do not en-
capsulate state (interfaces in Java fall into that category).
For this reason, Scala introduces the notion of traits. Traits
are abstract classes that do not encapsulate state, neither
in form of variable de�nitions nor by providing a construc-
tor with parameters. Opposed to interfaces in Java though,
they may implement concrete methods.

Since traits do not encapsulate state, inheriting twice
from a trait is legal in Scala. It is therefore possible to have
the same trait multiple times in the superclass hierarchy of
a class.

Reuse of class IterableBuffer is also restricted by
the requirement that it can only be mixed into classes
that subclass Buffer. But the functionality provided
by IterableBuffer only depends on the existence of an
elements method. Scala makes it possible to express this
in the following form:

trait Iterable[T] {
def elements: Iterator[T];
def forall(p: T => Boolean): Boolean = {

val it = elements; var res = true;
while (res && it.hasNext) { res = p(it.next) }
res

}
def exists(p: T => Boolean): Boolean = {
val it = elements; var res = false;
while (!res && it.hasNext) { res = p(it.next) }
res

}
}

Trait Iterable de�nes methods forall and exists as be-
fore, but defers the de�nition of method elements � it
is abstract in the terminology of Java. As opposed to
class IterableBuffer, this trait can be mixed into all
classes. If Iterable is mixed into a class without a concrete
elements method, then the resulting class will have a de-
ferred elementsmethod, otherwise, the concrete method will
implement the deferred method mentioned in trait Iterable.
Thus, concrete methods always override abstract ones in
mixin-class compositions. This principle is exploited in the
following alternative de�nition of class IterableBuffer:

class IterableBuffer[T] extends Buffer[T]
with Iterable[T];

6.3 Layering Classes and Traits

Scala's mixin-class composition mechanism makes it easy to
compose complex classes with extensive functionality from
smaller and simpler ones that model only particular aspects.
The previous section showed how traits can be used to create
generic abstractions that can be used to add new methods
or to implement deferred methods of existing classes. Traits
mixed into a class can also override existing methods, as the
following code fragment shows:

trait Displayable[T] {
def elements: Iterator[T];
override def toString(): String = {
val res = new StringBuffer;
for (val elem <- elements) res.append(" " + elem);
res.toString()

}
}
class DisplayableBuffer[T] extends IterableBuffer[T]

with Displayable[T];

Class DisplayableBuffer[T] now provides the toString()
method de�ned in trait Displayable[T].

The presented technique for overriding methods only
works if the method in the superclass or in the mixed in
traits is concrete. But often, one would like to de�ne generic
traits that enhance an existing method by overriding with-
out that method being concrete in the superclass. As an
example, consider providing a building block for making it-
erators synchronized such that they can be used in a con-
current setting. A naive de�nition would be:

// erroneous trait definition
trait SynchronizedIterator[T] extends Iterator[T] {
override def next: T = synchronized { super.next }
override def hasNext: Boolean =
synchronized { super.hasNext }

}

12

This de�nition is illegal, because supertrait Iterator does
not provide concrete implementations for both methods next
and hasNext. Thus, the super reference is not allowed.

Scala still allows programmers to de�ne such an abstrac-
tion. However, it requires that an abstract modi�er is used
for all those methods which override abstract methods in
the static superclass, yet which are supposed to override
concrete methods in a mixin composition.

trait SynchronizedIterator[T] extends Iterator[T] {
abstract override def next: T =
synchronized { super.next }

abstract override def hasNext: Boolean =
synchronized { super.hasNext }

}

Classes containing methods tagged with both abstract and
override cannot be instantiated � they have to be declared
abstract themselves. Furthermore, such classes can only
be mixed into classes that provide concrete versions for all
mixed in methods �agged with abstract and override.

Traits like SynchronizedIterator are extremely useful
for synchronizing arbitrary iterator implementations simply
by a mixin composition. For instance, we could implement
a synchronized iterator for the Buffer class based on an
unsynchronized version as de�ned by class BufferIterator
at the beginning of Section 6.1.

class Buffer[T] {
...
def elements: Iterator[T] =
new BufferIterator with SynchronizedIterator[T];

}

In mainstream object-oriented languages like Java, program-
mers would typically separate concerns using object composi-
tion techniques. Here, a generic synchronized iterator class
would provide synchronized methods that forward the call to
the corresponding methods of another unsynchronized iter-
ator. The advantage of this approach is its �exibility, since
it can be decided dynamically whether to use a synchro-
nized or unsynchronized iterator. On the other hand, this
approach does not guarantee statically that the synchroniza-
tion scheme is adhered to at runtime, since programmers can
possibly circumvent the programming pattern easily by ex-
posing the unsynchronized iterator.

The approach based on mixin class composition turns
iterators statically into synchronized iterators guaranteeing
that synchronization cannot be broken by programmers at
runtime. In Scala, the programmer has the choice between
composing abstractions at runtime using object composition
or at compile-time using class composition. Whether one
uses object or class composition depends predominantly on
the particular �exibility and safety requirements.

6.4 Service-Oriented Component Model

Scala's class abstraction and composition mechanism can be
seen as the basis for a service-oriented software component
model. Software components are units of computation that
provide a well-de�ned set of services. Typically, a software
component is not self-contained; i.e., its service implemen-
tations rely on a set of required services provided by other
cooperating components.

In Scala, software components correspond to classes and
traits. The concrete members of a class or trait represent

the provided services, deferred members can be seen as the
required services. The composition of components is based
on mixins, which allow programmers to create bigger com-
ponents from smaller ones.

The mixin-class composition mechanism of Scala iden-
ti�es services with the same name; for instance, a de-
ferred method m can be implemented by a class C de�n-
ing a concrete method m simply by mixing-in C. Thus,
the component composition mechanism associates automat-
ically required with provided services. Together with the
rule that concrete class members always override deferred
ones, this principle yields recursively pluggable components
where component services do not have to be wired explic-
itly [47].

This approach simpli�es the assembly of large compo-
nents with many recursive dependencies. It scales well even
in the presence of many required and provided services, since
the association of the two is automatically inferred by the
compiler. The most important advantage over traditional
black-box components is that components are extensible en-
tities: they can evolve by subclassing and overriding. They
can even be used to add new services to other existing com-
ponents, or to upgrade existing services of other compo-
nents. Overall, these features enable a smooth incremental
software evolution process [48].

7 Decomposition

7.1 Object-Oriented Decomposition

Often programmers have to deal with structured data. In
an object-oriented language, structured data would typically
be implemented by a set of classes representing the various
structural constructs. For inspecting structured data, a pro-
grammer can solely rely on virtual method calls of methods
provided by such classes.

Suppose we want to implement a simple evaluator for
algebraic terms consisting of numbers and a binary plus op-
eration. Using an object-oriented implementation scheme,
we can decompose the evaluator according to the term struc-
ture as follows:

trait Term {
def eval: int;

}
class Num(x: int) extends Term {
def eval: int = x;

}
class Plus(left: Term, right: Term) extends Term {
def eval: int = left.eval + right.eval;

}

The given program models terms with trait Term which de-
�nes a deferred eval method. Concrete subclasses of Term
model the various term variants. Such classes have to pro-
vide concrete implementations for method eval.

Such an object-oriented decomposition scheme requires
the anticipation of all operations traversing a given struc-
ture. As a consequence, even internal methods sometimes
have to be exposed to some degree. Adding new methods
is tedious and error-prone, because it requires all classes
to be either changed or subclassed. A related problem is
that implementations of operations are distributed over all
participating classes making it di�cult to understand and
change them.

13

7.2 Pattern Matching Over Class Hierarchies

The program above is a good example for cases where a
functional decomposition scheme is more appropriate. In a
functional language, a programmer typically separates the
de�nition of the data structure from the implementation of
the operations. While data structures are usually de�ned
using algebraic datatypes, operations on such datatypes are
simply functions which use pattern matching as the basic
decomposition principle. Such an approach makes it pos-
sible to implement a single eval function without exposing
arti�cial auxiliary functions.

Scala provides a natural way for tackling the above pro-
gramming task in a functional way by supplying the pro-
grammer with a mechanism for creating structured data
representations similar to algebraic datatypes and a decom-
position mechanism based on pattern matching.

Instead of adding algebraic types to the core language,
Scala enhances the class abstraction mechanism to simplify
the construction of structured data. Classes tagged with the
case modi�er automatically de�ne a constructor with the
same arguments as the primary constructor. Furthermore,
Scala introduces pattern matching expressions in which it
is possible to use such constructors of case classes as pat-
terns. Using case classes, the algebraic term example can be
implemented as follows:

trait Term;
case class Num(x: int) extends Term;
case class Plus(left: Term, right: Term) extends Term;

Given these de�nitions, it is now possible to create the
algebraic term 1 + 2 + 3 without using the new primi-
tive, simply by calling the constructors associated with case
classes: Plus(Plus(Num(1), Num(2)), Num(3)). Scala's
pattern matching expressions provide a means of decompo-
sition that uses these constructors as patterns. Here is the
implementation of the eval function using pattern match-
ing:

object Interpreter {
def eval(term: Term): int = term match {
case Num(x) => x
case Plus(left, right) => eval(left) + eval(right);

}
}

The matching expression x match { case pat1 => e1

case pat2 => e2 ...} matches value x against the patterns
pat1, pat2, etc. in the given order. The program above uses
patterns of the form Constr(x1, ..., xn) where Constr refers
to a case class constructor and xi denotes a variable. An ob-
ject matches such a pattern if it is an instance of the corre-
sponding case class. The matching process also instantiates
the variables of the �rst matching pattern and executes the
corresponding right-hand-side.

Such a functional decomposition scheme has the ad-
vantage that new functions can be added easily to
the system. On the other hand, integrating a new
case class might require changes in all pattern match-
ing expressions. Some applications might also pro�t
from the possibility of de�ning nested patterns, or pat-
terns with guards. For instance, the nested pattern
case Plus(x, y) if x == y => ... matches only terms of
the form t + t. The equivalence of the two variables x and
y in the previous pattern is established with the help of the

guard x == y.4

8 XML Processing

XML is a popular data format. Scala is designed to ease con-
struction and maintenance of programs that deal with XML.
It provides a data model for XML by means of traits and
particular subclasses. Processing of XML can then be done
by deconstructing the data using Scala's pattern matching
mechanism.

8.1 Data Model

Scala's data model for XML is an immutable representation
of an ordered unranked tree. In such a tree each node has
a label, a sequence of children nodes, and a map from at-
tribute keys to attribute values. This is speci�ed in the trait
scala.xml.Node which additionally contains equivalents of
the XPath operators child and descendant-or-self, which are
written \ and \\. Concrete subclasses exist for elements,
text nodes, comments, processing instructions, and entity
references.

XML syntax can be used directly in a Scala program,
e.g., in value de�nitions.

val labPhoneBook =
<phonebook>
<descr>Phone numbers ofXML hackers.</descr>
<entry>
<name>Burak</name>
<phone where="work"> +41 21 693 68 67 </phone>
<phone where="mobile"> +41 78 601 54 36 </phone>

</entry>
</phonebook>;

The value labPhoneBook is an XML tree; one of its nodes has
the label phone, a child sequence consisting of a text node
labeled by +41 2.., and a map from the attribute key where
to the value "work". Within XML syntax it is possible to es-
cape to Scala using the brackets { and } (similar to the con-
vention used in XQuery). For example, a date node with a
child text node consisting of the current date can be de�ned
by <date>{ df.format(new java.util.Date()) }</date>.

8.2 Schema Validation

Types of XML documents are typically speci�ed by so called
schemas. Popular schema formalisms are DTDs (Docu-
ment Type De�nitions) [7], XML Schema [18], and RELAX
NG [33]. At this moment a simple support for DTDs is
available through the dtd2scala tool. It converts a DTD to
a set of class de�nitions which can only be instantiated with
XML data that is valid with respect to the DTD. Existing
XML documents can then be validated against the DTD by
using a special load method which tries to instantiate the
corresponding classes (using pattern matching). In the fu-
ture, support for the richer set of types of XML Schema
is planned, including static type checking through regular
types.

4Patterns in Scala are linear in the sense that a variable may ap-
pear only once within a pattern.

14

8.3 Regular Sequence Pattern Matching

XML nodes can be decomposed using pattern matching.
Scala allows to use XML syntax here too, albeit only to
match elements. The following example shows how to add
an entry to a phonebook element.

import scala.xml.Node ;
def add(phonebook: Node, newEntry: Node): Node =
phonebook match {
case <phonebook>{ cs @ _* }</phonebook> =>
<phonebook>{ cs }{ newEntry }</phonebook>

}
val newPhoneBook =
add(scala.xml.nobinding.XML.load("savedPhoneBook"),

<entry>
<name>Sebastian</name>
<phone where="work">+41 21 693 68 67</phone>

</entry>);

The add function performs a match on the phonebook ele-
ment, binding its child sequence to the variable cs (the reg-
ular sequence pattern _* matches an arbitrary sequence).
Then it constructs a new phonebook element with child se-
quence cs followed by the node newEntry.

Regular sequence patterns extend conventional algebraic
patterns discussed in Section 7 with the regular expression
constructs * (zero to arbitrary repetition of a sequence), ?
(zero or one occurrence of a sequence), and | (to describe
an alternative of sequences). They can be applied to any
sequence, i.e. any instance of Seq[A]. The following example
illustrates their use.

def findRest(z: Seq[Char]): Seq[Char] = z match {
case Seq(_*, ’G’, ’o’, ’o’*, ’g’, ’l’, ’e’,

rest@(_*)) => rest
}

This pattern is used to search for the sequence of letters
"Gogle" or "Google", or If the input z matches, then
the function returns what remains after the occurrence, oth-
erwise it generates a runtime error. Ambiguities that emerge
(e.g., for several occurrences of 'Go*gle-words' in z) are re-
solved using the (left) shortest match policy which chooses
the shortest match for each possibility (such as a *), coming
from the left. In the example this coincides with matching
the �rst occurrence of "Goo*gle" in the input z.

8.4 XML Queries through For Comprehension

A pattern match determines at most one match of a pattern.
When querying XML one is often interested in locating all
matches to a query. Scala's �exible comprehension mecha-
nism can be used to query XML in a concise and elegant
style that closely resembles XQuery. In the following exam-
ple, we select all entry elements from labAddressbook and
from labPhoneBook into the variables a and p, respectively.
Whenever the name contents of two such entries coincide, a
result element is generated which has as children the ad-
dress and phone number, taken from the appropriate entry.

for (val a <- labAddressBook \\ "entry";
val p <- labPhoneBook \\ "entry";
a \ "name" == p \ "name") yield

<result>{ a.child }{ p \ "phone" }</result>

9 Autonomous Components

The Scala language as such does not provide any primi-
tives for concurrent programming. Instead the core lan-
guage has been designed to make it easy to build libraries
to provide di�erent concurrency models built on top of the
thread model of the underlying host language. In this sec-
tion we will exemplify the power of Scala by implementing
a small library for fault-tolerant active objects with a �avor
of Erlang-like actors [1].

Imagine for example that you have written a server class
MyServer that is invoked by calling the method startServer.
Scala makes it possible to make this server concurrent just
by mixing it into the thread class.

class MyConcurrentServer extends Thread with MyServer {
override def run() = startServer;

}

We can generalize the code above to a class, lets call it
Process, which can take arbitrary code and execute it in a
separate thread.

class Process(def body: unit) extends Thread {
override def run() = body;

}

To make it even easier to spawn new processes we can im-
plement a spawn function in an object.

object Process {
def spawn(def body: unit): Process = {
val p = new Process(body); p.start(); p

}
}

Now we can start a process, but how do we stop it? Well
a process stops when it has no more code to execute, i.e.,
when the code in body reaches its end. Sometimes we would
like to kill the process prematurely, we can do this by adding
an exit method to the Process class.

class Process(def body: unit) extends Thread {
private var exitReason: AnyRef = null;
override def run() = {
try { body }
catch {
case e: InterruptedException =>
exitReason match {
case null => Console.println(
"Process exited abnormally " + e);

case _ => Console.println(
"Process exited with reason: " +
exitReason);

}
}

}
def exit(reason: AnyRef): unit = {
exitReason = reason; interrupt()

}
}

Just running an object in a separate thread does not give
us true active objects. All method calls and �eld accesses
from other threads have to be synchronized in order to be
safe. Adding this synchronization by hand is error prone
and can easily lead to deadlocks or ine�cient code.

A better approach to thread communication is to use

15

message passing, e.g., by implementing an Erlang like actor
model. In Erlang each actor (or process in the Erlang ter-
minology) has a mailbox to which other processes can asyn-
chronously send messages. The process owning the mailbox
can selectively receive messages from the mailbox. In Scala
we can implement mailboxes with the following signature.

class MailBox {
def send(msg: Any): unit;
def receive[a](f: PartialFunction[Any, a]): a;
def receiveWithin[a](msec: long)

(f: PartialFunction[Any, a]): a;
}

Messages are added to the mailbox by the send method.
Messages are removed using the receive method, which is
passed a message processor f as argument, which is a par-
tial function from messages to some arbitrary result type.
Typically, this function is implemented as a pattern match-
ing expression. The receive method blocks until there is a
message in the mailbox for which its message processor is
de�ned. The matching message is then removed from the
mailbox and the blocked thread is restarted by applying the
message processor to the message. Both sent messages and
receivers are ordered in time. A receiver r is applied to a
matching message m only if there is no other (message, re-
ceiver) pair which precedes (m, r) in the partial ordering on
pairs that orders each component in time.

We can now extend our Process class by mixing in the
MailBox class.

class Process(def body: unit) extends Thread
with MailBox {

//...
}

In order to build fault-tolerant systems it is imperative
that we can detect failures in a process. This can be achieved
by making it possible to link processes. When a process (A)
is linked to another process (B), A will send a signal to B
when A dies. This makes it possible to monitor the failure
of processes and to implement supervision trees where a su-
pervisor process monitors worker processes and can restart
them if they fail.

To implement this in Scala we have to add a list of links
to the Process class and provide the link methods, as well
as signal a failure to all linked processes. We can now give
the complete Process class, see Listing 2.

We can use the Process class to implement a small
counter server (see Listing 3). This server implements a
counter that can be incremented and read by sending the
messages Increment, and GetValue respectively. The server
itself consists of only one method, the server method. The
object Counter provides a functional interface to the counter
process.

10 Component Adaptation

Even component systems with powerful constructs for ab-
straction and composition face a problem when it comes
to integrating sub-systems developed by di�erent groups at
di�erent times. The problem is that the interface of a com-
ponent developed by one group is often not quite right for
clients who wish to use that component. For instance, con-
sider a library with a class like GenList from Section 5. A

class Signal extends Message;
case class Normal() extends Signal;
case class Exit(p: Process, m: Message)

extends Message;

class Process(def body: unit) extends Thread
with MailBox {

private var exitReason: AnyRef = null;
private var links: List[Process] = Nil;
override def run() =
try { body; signal(Normal()) }
catch {
case _: InterruptedException =>
signal(exitReason);

case exitSignal =>
signal(exitSignal);

}
private def signal(s: Message) =
links.foreach(
p: Process => p.send(Exit(this, s)));

def !(msg: Message) = send(msg);
def link(p: Process) = links = p :: links;
def unlink(p: Process) =
links = links.remove(p2 => p == p2);

def spawnLink(def body: unit) = {
val p = new Process(body);
p.link(this); p.start(); p

}
def self = this;
def exit(reason: AnyRef): unit = {
exitReason = reason; interrupt()

}
}

Listing 2: The Process class.

client of this library might wish to treat such lists as sets,
supporting operations such as member inclusion or contain-
ment tests. However, the provider of the class might not
have thought of this usage scenario, and consequently might
have left out these methods from the interface of GenList.

One might argue that inheritance can allow clients to tai-
lor the supported methods of a class to their requirements;
however this is only true if a client has control over all cre-
ation sites of the class. If the library also returns an opera-
tion such as

def fromArray(xs: Array[T]): GenList[T]

then inheritance cannot be used to turn a GenList into a
SetList after it has been returned from method fromArray.
One can circumvent this restriction to some degree by in-
cluding factory methods [20]in libraries. However, this in-
volves fairly complicated frameworks which are di�cult to
learn and instantiate, and it fails for library components that
inherit from classes that need to be extended by clients.

This unsatisfactory situation is commonly called the ex-
ternal extensibility problem. It has been argued that this
problem holds back the development of software components
to a mature industry where components are independently
manufactured and deployed [28].

16

object Counter {
class Messages();
case class Increment() extends Messages;
case class GetValue(from: Process) extends Messages;
case class Stop() extends Messages;
case class Value(value: int) extends Messages;
def start: Process = spawn(server(0));
def increment(Counter: Process): unit =
Counter ! Increment();

def value(Counter: Process): int = {
Counter ! GetValue(self);
receive { case Value(value) => value }

}
def stop(Counter: Process): unit = Counter ! Stop();
private def server(v: int): unit = {
var stop = false;
var value = v;
while (! stop) {
receive {
case Increment() => value = value + 1;
case GetValue(from) => from ! Value(value);
case Stop => stop = true;

}
}

}
}

Listing 3: Example of the use of processes, a simple server.

10.1 Views

Scala introduces a new concept to solve the external exten-
sibility problem: views allow one to augment a class with
new members and supported traits. Views follow some of
the intuitions of Haskell's type classes, translating them into
an object-oriented approach. Unlike with type classes, the
scope of a view can be controlled, and competing views can
coexist in di�erent parts of one program.

A view is introduced by a normal Scala method de�nition
which de�nes an entity named view. For instance, assume
the following trait for simple generic sets:

trait Set[T] {
def include(x: T): Set[T];
def contains(x: T): boolean

}

A view from class GenList to class Set is introduced by the
following method de�nition.

def view[T](xs: GenList[T]): Set[T] = new Set[T] {
def include(x: T): Set[T] =
x prepend xs;

def contains(x: T): boolean =
!isEmpty && (xs.head == x || xs.tail contains x)

}

Hence, if xs is a GenList[T], then view(xs) would return a
Set[T].

The only di�erence with respect to a normal method
de�nition is that views are inserted automatically by the
Scala compiler. Say, e is an expression of type T . A view
is implicitly applied to e in one of two possible situations:
when the expected type of e is not (a supertype of) T , or

when a member selected from e is not a member of T . For
instance, assume a value xs of type List[T] which is used
in the following two lines.

val s: Set[T] = xs;
xs contains x

The compiler would insert applications of the view de�ned
above into these lines as follows:

val s: Set[T] = view(xs);
view(xs) contains x

Which views are available for insertion? Scala considers as
candidates all views which can be accessed at the point of
insertion without a pre�x expression. This includes views
de�ned locally or in some enclosing scope, as well as views
inherited from base classes or imported from other objects
by an import clause. Shadowing is not taken into account.
That is, a local view does not hide a view de�ned in an en-
closing scope. A view is applicable if can be applied to the ex-
pression and it maps to the desired type (or to any type con-
taining the desired member). Among all candidates, Scala
picks the most speci�c applicable view. Here, speci�city is
interpreted in the same way as for overloading resolution in
Java and Scala. It is an error if no view is applicable, or
among the applicable views no most speci�c one exists.

Locality is ensured by the restriction that only those
views accessible without a pre�x are candidates. Clients
can tailor the set of available views by selectively importing
objects de�ning views.

Views are used frequently in the Scala library to upgrade
Java's types to support new Scala traits. An example is
Scala's trait Ordered which de�nes a set of comparison op-
erations. Views from all basic types as well as class String
to this type are de�ned in a module scala.Predef. Since the
members of this module are imported implicitly into every
Scala program, the views are always available. From a user's
perspective, it is almost as if the Java classes are augmented
by the new traits.

10.2 View Bounds

As presented so far, view methods have to be visible stati-
cally at the point of their insertion. Views become even more
useful if one can abstract over the concrete view method to
be inserted. An example is the following generic maximum
method, which returns the maximum element of a non-
empty list.

def maximum[T <% Ordered[T]](xs: List[T]): unit = {
var mx = xs.head;
for (val x <- xs.tail) if (mx < x) mx = x
mx

}

The method has a view bounded type parameter
[T <% Ordered[T]]. This type parameter can be instan-
tiated to any type T which is a subtype of, or viewable as
Ordered[T]. In particular, we can apply maximum to lists of
basic types for which standard Ordered views exist.

Note that a view method application needs to be inserted
in the mx < x condition in method maximum. Where does this
view method come from? Since it is not statically known at
the point of insertion, it must be passed as a parameter.
In fact, for every view-bounded type parameter [t <: T],
an implicit value parameter (view: t => T) is added to the

17

parameter list of a class or method. When the class con-
structor or method is called, a concrete view method which
matches the view parameter type is passed. The selection
of this view method is analogous to the view selection for
type conversions discussed in the last section.

For instance, the method call

maximum(List(1, -3, 42, 101))

would be completed to

maximum(view)(List(1, -3, 42, 101))

where view is the view method from int to Ordered[int]
de�ned in scala.Predef.

10.3 Conditional Views

View methods might themselves have view-bounded type
parameters. This allows the de�nition of conditional views.
For instance, it makes sense to compare lists lexicographi-
cally as long as the list element type admits comparisons.
This is expressed by the following view method:

def view[T <% Ordered[T]](x: List[T]) =
new Ordered[List[T]] {
def < (y: List[T]): boolean =
!y.isEmpty &&
(x.isEmpty || x.head < y.head ||
x.head == y.head && x.tail < y.tail)

}

The method maps elements of type List[T] to instances of
type Ordered[List[T]] as de�ned in Section 5.1, provided
the list element type T is itself viewable as Ordered[T].

11 Implementation

The Scala compiler compiles Scala source code to JVM class
�les. It supports separate compilation by storing Scala type
information in the generated class �les as an attribute.

The compiler consists of several phases. The �rst one,
the parser, reads all source �les and generates an abstract
syntax tree. This tree is then passed to the successive phases
which annotate it or transform it. Finally, the tree is lin-
earized and translated to JVM bytecode.

The next sections describe the di�erent compiler phases
and the transformations applied to the Scala code. For rea-
sons of space we leave out some phases and transformations.

11.1 Parsing

The parser consists of a hand-written scanner and parser.
The parser is a standard top-down parser. The scanner is
the combination of two scanners: the Scala scanner, and the
XML scanner which is needed to parse the XML literals.

11.2 Code Analysis

The code analysis phase is indisputably the most complex
of all compiler phases. This is partly due to the number of
tasks it performs, including

� name analysis

� overloading resolution

� view resolution

� type inference

� type analysis

� constraint checks.

However, most of the di�culty comes from the fact that
these tasks have to be performed simultaneously because
each tasks needs some information provided by one or sev-
eral others. The name analysis, the type analysis and the
overloading resolution are similar to what is done in Java
compilers. The main di�erence is the presence of type
parametrized classes and functions which often may be omit-
ted and have to be inferred by the compiler. The type in-
ference is based on the colored local type inference [38].

11.3 Functions with def parameters

Functions with def parameters are rewritten to functions
where each def parameter of type T is replaced by a normal
parameter of type Function0[T]. For example, the de�ni-
tion

def or(x: Boolean, def y: Boolean): Boolean =
if (x) true else y;

is rewritten to

def or(x: Boolean, y: Function0[Boolean]): Boolean =
if (x) true else y.apply();

The example shows also that references to def parameters
are replaced by a call to the apply method of the rewritten
parameters.

At a call site, arguments corresponding to def parame-
ters are replaced by instances of Function0. For example,
the expression or(isFoo(), isBar()) is replaced by the fol-
lowing expression.

or(isFoo(), new Function0[Boolean] {
def apply(): Boolean = isBar()

})

11.4 Curried Functions

The JVM supports only functions with one parameter sec-
tion. Therefore functions with multiple parameter sections
must be eliminated. This is done by merging all sections
into one. For example, the function

def sum(x: Int)(y: Int): Int = x + y;

is replaced by the following one

def sum(x: Int, y: Int): Int = x + y;

Partial applications of functions with multiple parameter
sections are replaced by anonymous functions. For example,
the de�nition

val inc: Int => Int = sum(1);

is replaced by

val inc: Int => Int = y => sum(1)(y) .

18

11.5 Pattern Matching Expressions

Pattern matching expressions are translated into automata
such that the number of tests needed to �nd the �rst match-
ing pattern is minimized. Algebraic patterns as discussed
in Section 7 and simple sequence patterns are translated
with the technique used by the extensible Java compiler
JaCo [49, 46]. The translation scheme corresponds closely
to the one introduced by the Pizza compiler [36].

The more powerful regular expression patterns discussed
in Section 8.3 use a di�erent translation scheme which is
based on the theory of regular tree grammars.

11.6 Local Classes and Functions

Both Scala and Java support local classes (i.e., classes de-
�ned in the body of a function) and Scala also supports local
functions. These local de�nitions are eliminated by lifting
them out into the next enclosing class; local classes become
new private classes of the enclosing class and local functions
become new private methods.

The main di�culty of lifting de�nitions is the possible
presence of references to variables of the enclosing function
in the body of the lifted de�nition. These references become
invalid after the lifting because the referenced variables are
no longer in the scope of the lifted de�nition. This is solved
by adding to the lifted de�nition a new argument for every
referenced variable of the enclosing function and by replac-
ing each reference to one of these variables by a reference to
the corresponding new argument.

This solution works well as long as all referenced vari-
ables are immutable. This is the case in Java but not in
Scala. With mutable variables, the described solution fails
because changes that occur after the lifted class is created or
the lifted function is called will never be noticed. Further-
more, there is no way to modify the value of the variable
from within the lifted de�nition.

To overcome these problems, mutable variables refer-
enced by local de�nitions are �rst transformed into Cells.
For example the variable de�nition

var i: Int = 0;

would be transformed into

val i: Cell[Int] = new Cell(0);

if it was referenced by a local de�nition.

11.7 Inner Classes

Although Java supports inner and nested classes, the JVM
supports neither of them. Therefore Java compilers have
to transform those classes into top-level classes. The Scala
compiler uses techniques similar to those used by Java com-
pilers.

Inner classes are transformed into nested classes by
adding a new �eld containing a reference to the enclosing
class instance and by replacing all references to this instance
by references to this new �eld. All constructors are also aug-
mented with a new argument needed to initialize the new
�eld.

The transformation of nested classes into top-level classes
involves giving them a non-con�icting top-level name. The
only di�culty is the possible presence of references to pri-
vate members of the enclosing class. These references would

be illegal in the resulting top-level class. To avoid them, a
new package-private access member is added to the enclosing
class for each of its private members that is referenced by an
nested class and all references in nested classes to these pri-
vate members are replaced by references the corresponding
access members.

11.8 Mixin Expansion

In Scala, every class may contain code and every class may
be used as a mixin. Therefore, by using mixins, it is possible
to de�ne classes that inherit code from several other classes.
In the following example

trait A {
def foo: String;
def bar: String;

}
class B extends A {
def foo: String = "foo";

}
class M extends A {
def bar: String = "bar";

}
class C extends B with M;

the class C inherits the implementation of method foo from
class B and the implementation of method bar from class M.

The JVM supports only single class inheritance. There-
fore, code inheritance from multiple classes has to be simu-
lated. This is done by copying the code that can't be inher-
ited.

In addition to class inheritance, the JVM supports mul-
tiple interface inheritance. An interface is an abstract class
that only declares members but contains no code. This
makes it possible to replicate any Scala type hierarchy on
the JVM.

To do so, every class C is split into a trait CT and a
class CC . The trait CT contains a member declaration for
every member declared in class C and, assuming that class
C extends class S and mixins M0, ..., Mn, it extends the
traits ST and MT

0 , ..., MT
n . The class CC extends the class

SC and the trait CT and receives all the code from class C.
In addition to that, all the code from the mixins M0, ..., Mn

is duplicated in class CC .
The code below shows how the example is transformed.

Note that CT keeps the name of C and that the name of
CC is obtainend by appending $class to the name C.

trait A {
def foo: String;
def bar: String;

}
abstract class A$class with A;
trait B with A {
def foo: String;

}
class B$class extends A$class with B {
def foo: String = "foo";

}
trait M with A {
def bar: String;

}
class M$class extends A$class with M {
def bar: String = "bar";

}

19

trait C with B with M;
class C$class extends B$class with C {
def bar: String = "bar";

}

It can be seen that class M$class inherits the implementation
of method foo from class B$class, but that the implemen-
tation of method bar in class M$class is not inherited and
has to be duplicated in class C$class.

The trait CT replaces all occurrences of class C in all
types. This is possible because, by construction, it exhibits
the same inheritance graph as class C and has the same
members. Since, it contains and inherits no code, the trait
CT can be mapped to a JVM interface. The class CC re-
places all occurrences of class C in instance creations. It is
mapped to a JVM class.

11.9 Type Mapping

At this point, after all the previously mentioned transfor-
mations, the mapping from Scala classes to JVM classes
is straightforward: every Scala class is mapped to a JVM
class with the same name. There are only two excep-
tions: classes Any and AnyRef which are both mapped to
java.lang.Object.

For performance reasons, instances of subclasses of
AnyVal are treated separately. These values are usually rep-
resented by their corresponding JVM primitive values and
not by instances of their class. The subclasses of AnyVal are
also replaced by their corresponding JVM primitive type
in function and variable declarations. For example, the
method def size: Int is compiled to a method with the
JVM primitive type int as return type. Instances of sub-
classes of AnyVal are created only when values of these types
are passed where a value of type Any or AnyVal is expected.

For performance reasons, instances of class Array are also
treated separately; these values are usually represented by
JVM native arrays. Instances of Array are created only ex-
ceptionally, for example when an array is passed where an
instance of Array[T], with T <: Any, is expected because
the JVM has no native array type that is a super-type of all
other array types.

11.10 Type Erasure

Although Java 1.5 introduces type parameterized classes and
methods to the language, the JVM still does not support
this. Therefore, all type parameter sections are removed and
the remaining type variables are replaced by their bounds.
Thus, types like List[Int] become List and function de�-
nitions like

def id[T](x: T): T = x;

become

def id(x: Any): Any = x;

Sometimes, a type cast needs to be added. This
happens when a function whose return type is a type
variable is called or when a variable whose type is
a type variable is used. For example, the expres-
sion id[String]("hello").length() has to be replaced by
id("hello").asInstanceOf[String].length() because the
function id, after transformation, has the return type Any.

This technique is also known as type erasure. It is used by
several other compilers, for example in the GJ compiler. It

has been formalized by Igarashi, Pierce, and Wadler in [25].
They also prove that all added type casts are safe (they
never raise a ClassCastException).

11.11 Code Generation

In the end, the code is in a shape such that it can be easily
linearized and converted to JVM class �les. This is done in
the last phase of the compiler. The class �le generation relies
on FJBG: a home-grown library for fast class �le generation.

11.12 Implementation Language

In the beginning, the whole compiler was written in Java,
or more precisely in Pico, a Java dialect with algebraic data
types. Since then some phases, including the scanner, the
parser and the analyzer have been rewritten in Scala. Our
goal is to have a compiler entirely written in Scala. Most of
the new code is now directly written in Scala and the old
Java code is slowly rewritten in Scala.

The library is almost entirely written in Scala. The
only exceptions are some internal runtime classes and the
value type classes along with the class Array which require
some special handling from the compiler as described in Sec-
tion 11.9.

12 Scala for .NET

The .NET platform is built around the Common Language
Infrastructure (CLI) [15] which provides a speci�cation for
executable code and the execution environment in which it
runs. The Common Language Speci�cation (CLS) is a sub-
set of the CLI that de�nes rules for language interoperability.
While Scala has been developed mostly with focus on JVM,
the aim is to support all CLS compliant features of .NET,
i.e. to be a CLS consumer.

12.1 Class and Method Mappings

The di�erences between the JVM and .NET start with the
root class on both platforms, namely java.lang.Object and
System.Object. Scala abstracts over this di�erence and in-
troduces the type scala.AnyRef as the root of the hierar-
chy for reference types (Section 3.1). In the .NET version
of Scala, AnyRef is an alias for System.Object, rather than
java.lang.Object.

The root class java.lang.Object de�nes several meth-
ods, among them the familiar equals, hashCode and
toString methods. On .NET, the root class System.Object
de�nes semantically equivalent methods but with di�erent
names. Since AnyRef is just an alias for one of the root
classes, it can be expected that on .NET its methods will
have names as de�ned in System.Object. However, this
would fragment the Scala language and preclude the pos-
sibility to write Scala programs that compile and run on the
two platforms without modi�cations.

The root of the Scala class hierarchy is scala.Any, which
is the direct superclass of AnyRef (Figure 3.1). It already
de�nes the equals, hashCode and toString methods. This
necessitates a translation of the names of the equivalent
methods of System.Object (Equals → equals, ToString →
toString, GetHashCode → hashCode), so that they override
the corresponding method in Any. This means that, say,
the ToString method of any .NET type is accessible as

20

toString from a Scala program. Furthermore, de�ning a
toString method in a Scala class will e�ectively override
System.Object.ToString. To avoid confusion, especially
among .NET programmers, the compiler will reject any at-
tempt to override any of these methods under its original
System.Object name.

trait A {
// ok, overrides System.Object.ToString
override def toString() = "A";

// compilation error, should be ’toString’
override def ToString() = "A";

// ok, just another method
def ToString(prefix: String): String;

}

Sometimes translating the name of a method is not
enough. The getClass method of java.lang.Object re-
turns an instance of java.lang.Class, which is primarily
used for re�ection. System.Object de�nes a similar method,
GetType, but it returns an instance of System.Type, which
serves the same purposes as java.lang.Class. While it is
possible to implement the getClass method for .NET (using
the J# runtime libraries), this method is considered to be
platform-speci�c and is not present in the .NET version of
Scala. One should use the GetType method and the native
.NET re�ection facilities.

Another platform-speci�c feature is object cloning. On
the JVM this is supported by the clone method of
java.lang.Object. Every class that requires cloning has
to implement the java.lang.Cloneable interface and over-
ride the clone method. On .NET, System.Object de-
�nes the MemberwiseClone method, which returns a �eld-
by-�eld (or shallow) copy of an object and cannot be over-
ridden. Object cloning is supported by implementing the
System.ICloneable interface which declares a Clone method
that has to be overridden in the implementing class.

class MyCloneable with ICloneable {
def Clone() = super.MemberwiseClone();

}

To improve source-level compatibility, many additional
methods of java.lang.String have to be mapped to the
appropriate System.String methods. At the same time, all
methods of System.String are accessible under their usual
names.

// java.lang.String.substring(int, int)
val s1 = "0123".substring(1, 3)); // "12";

// System.String.Substring(int, int)
val s2 = "0123".Substring(1, 3)); // "123";

12.2 Properties

.NET properties are a metadata-level mechanism to asso-
ciate getter and/or setter methods with a single common
name. C# [14] introduces special syntax for de�nining prop-
erties.

public class Celsius {
private int d = 0;
public int degree {

get { return d; }
set { if (value >= -273) d = value; }

}
}

The value of a property is obtained using its name (as
with a �eld); to set a new value, the �eld assignment syntax
is used.

Celsius c = new Celsius(); c.degree = c.degree - 1;

Scala employs a similar technique in its treatment of vari-
ables, which can be extended to de�ning properties. The
getter and setter methods of a .NET property are trans-
lated according to the Scala convention (Section 3.3) and
can be used as if they were de�ned in Scala.

val c = new Celsius; c.degree = c.degree - 1;

Properties in .NET can have parameters (indexed prop-
erties). In C#, they are declared using special syntax.

abstract class Map {
public abstract Object this[Object key] { get; set; }

}

To give access to such properties, C# employs an array
indexing syntax.

public void inverse(Map map, Object key) {
Object v = map[key];
map[v] = key;

}

Such properties can be translated according to the
scheme used to implement arrays in Scala (Section 4.3). The
getter of an indexed property is renamed to apply, and the
setter to update. Then, from a Scala perspecive, the class
Map will look like this.

abstract class Map {
def apply(key: Any): Any;
def update(key: Any, value: Any): unit;

}

And can be used in a way, similar to C#.

def inverse(map: Map, key: Any) = {
val v = map(key); map(v) = key;

}

12.3 Value Types

User-de�ned value types are a novel feature of the .NET
framework. They obtain their special status by extending
System.ValueType. Objects of value types are allocated on
the stack, as opposed to reference types which are allocated
on the heap. They are also passed by value when used as
method arguments. In many situations, for instance generic
collection libraries, the code is written to handle reference
types. Fortunately, every value type can be represented as
an instance of a reference type. The Scala compiler will stat-
ically determine the need for such conversion and generate
the appropriate code.

Scala's notion of value types does not extend to user-
de�nable value types. Consequently, one cannot de�ne
.NET value types in Scala. They have to be provided in
an external .NET binary �le called an assembly.

21

Structures. Value types are useful for representing
lightweight objects. In C# they are called structures and
are de�ned using special syntax.

struct Point {
public Point(int x, int y) { this.x = x; this.y = y; }
public int x, y;

}

Once de�ned in a .NET assembly, structures can be used
in Scala programs like regular reference types.

def r(p: Point): double = Math.Sqrt(p.x*p.x + p.y*p.y);
def dist(p1: Point, p2.Point): double = {
val p = new Point(p1.x - p2.x, p1.y - p2.y);
r(p)

}

Enumerations. .NET has native support for type-safe
enumerations. An enumeration type extends System.Enum
and de�nes a value type, since System.Enum extends
System.ValueType. The members of an enumeration are
named constants of any integral type (int, short, etc.) ex-
cept for char. Every enumeration de�nes a distinct type and
its members cannot be used as values of the enumeration's
underlying type; this is only possible with an explicit cast.

In C#, an enumeration is de�ned using special syntax.

public enum Color {
Red, Green, Blue

}

When a .NET enumeration is used in a Scala program,
it is treated as a reference type. Its members are seen as
static �elds that have the type of the enumeration.

class Color extends System.Enum;
object Color {
val Red: Color;
val Green: Color;
val Blue: Color;

}

In a .NET assembly these �elds are represented as lit-
erals. Literals have �xed values which reside in the assem-
bly metadata, and they cannot be referenced at runtime.
Instead, the compiler inlines the value associated with the
�eld.

Every enumeration type is augmented with methods that
perform comparisons (==, !=, <, <=, >, >=) and bitwise logical
operations (|, &, ^).

def isRed(c: Color): Boolean = (c == Color.Red);

However, such methods do not exist in the de�nition of
the enumeration. They are recognized by the compiler and
implemented to perform the respective primitive operation
on the numerical values associated with the members of the
enumeration.

13 Related Work

Scala's design is in�uenced by many di�erent languages and
research papers. The following enumeration of related work
lists the main design in�uences.

Of course, Scala adopts a large part of the concepts and
syntactic conventions of Java [22] and C# [14]. Scala's way
to express properties is loosely modelled after Sather [42].
From Smalltalk [21] comes the concept of a uniform ob-
ject model. From Beta [30] comes the idea that everything
should be nestable, including classes. Scala's design of mix-
ins comes from object-oriented linear mixins [6], but de�nes
mixin composition in a symmetric way, similar to what is
found in mixin modules [13, 24, 48] or traits [41]. Scala's
abstract types have close resemblances to abstract types of
signatures in the module systems of ML [23] and OCaml [29],
generalizing them to a context of �rst-class components.
For-comprehensions are based on Haskell's monad compre-
hensions [44], even though their syntax more closely resem-
bles XQuery [3]. Views have been in�uenced by Haskell's
type classes [45]. They can be seen as an object-oriented
version of parametric type classes [37], but they are more
general in that instance declarations can be local and are
scoped. Classboxes [2] provide the key bene�ts of views in
a dynamically typed system. Unlike views, they also permit
local rebinding so that class extensions can be selected using
dynamic dispatch.

In a sense, Scala represents a continuation of the work on
Pizza [36]. Like Pizza, Scala compiles to the JVM, adding
higher-order functions, generics and pattern matching, con-
structs which have been originally developed in the func-
tional programming community. Whereas Pizza is back-
wards compatible with Java, Scala's aim is only to be in-
teroperable, leaving more degrees of freedom in its design.

Scala's aim to provide advanced constructs for the ab-
straction and composition of components is shared by sev-
eral recent research e�orts. Abstract types are a more con-
servative construction to get most (but not all) of the ben-
e�ts of virtual classes in gbeta [16, 17]. Closely related are
also the delegation layers in FamilyJ [39] and work on nested
inheritance for Java [32]. Jiazzi [31] is an extension to Java
that adds a module mechanism based on units, a powerful
form of parametrized module. Jiazzi supports extensibility
idioms similar to Scala, such as the ability to implement
mixins.

The Nice programming language [4] is a recent object-
oriented language that is similar to Java, but has its her-
itage in ML≤ [5]. Nice includes multiple dispatch, open
classes, and a restricted form of retroactive abstraction
based on abstract interfaces. Nice does not support modular
implementation-side typechecking. While Nice and Scala are
languages which di�er signi�cantly from Java, they both are
designed to interoperate with Java programs and libraries,
and their compiler targets the JVM.

MultiJava [12] is a conservative extension of Java that
adds symmetric multiple dispatch and open classes. It pro-
vides alternative solutions to many of the problems that
Scala also addresses. For instance, multiple dispatch pro-
vides a solution to the binary method problem, which is
addressed by abstract types in Scala. Open classes provide
a solution to the external extensibility problem, which is
solved by views in Scala. A feature only found in Multi-
Java is the possibility to dynamically add new methods to
a class, since open classes are integrated with Java's regular
dynamic loading process. Conversely, only Scala allows to
delimit the scope of an external class extension in a program.

OCaml and Moby[19] are two alternative designs that
combine functional and object-oriented programming using
static typing. Unlike Scala, these two languages start with
a rich functional language including a sophisticated module

22

system and then build on these a comparatively lightweight
mechanism for classes.

14 Conclusion

Scala is both a large and a reasonably small language. It
is a large language in the sense that it has a rich syntax
and type system, combining concepts from object-oriented
programming and functional programming. Hence, there
are new constructs to be learned for users coming from ei-
ther language community. Much of Scala's diversity is also
caused by the motivation to stay close to conventional lan-
guages such as Java and C#, with the aim to ease adoption
of Scala by users of these languages.

Scala is also a reasonably small language, in the sense
that it builds on a modest set of very general concepts. Many
source level constructs are syntactic sugar, which can be
removed by encodings.

Generalizations such as the uniform object model allow
one to abstract from many di�erent primitive types and op-
erations, delegating them to constructs in the Scala library.

Scala's speci�cation and implementation also indicate
that its complexity is manageable. The current Scala com-
piler frontend is roughly as large as Sun's Java 1.4 frontend
� we expect to decrease its size signi�cantly by rewriting
it completely in Scala. The current Scala speci�cation [34]
(about 100 pages) is considerably smaller than the current
Java 1.4 speci�cation [22] (about 400 pages). These sizes
are hard to compare, though, as the Scala speci�cation still
lacks the level of maturity of the Java speci�cation, and also
uses shorter formulas in many places where the Java speci-
�cation uses prose.

Scala has been released publicly on the JVM platform in
January 2004 and on the .NET platform in June 2004. The
implementation is complete except for run-time types; these
are expected for the end of 2004. In the future, we intend
to experiment with more re�ned type systematic support for
XML, constructor polymorphism, and interfaces to database
query languages, and to extend the current set of standard
Scala libraries. We also plan to continue work on formalizing
key aspects of of the language and on developing compiler
optimizations targeted at its constructs.

Acknowledgments Scala's design and implementation
was partially supported by grants from the Swiss National
Fund under project NFS 21-61825, the Swiss National Com-
petence Center for Research MICS, Microsoft Research, and
the Hasler Foundation. We also thank Gilad Bracha, Erik
Ernst, Benjamin Pierce, Mads Torgersen, and Philip Wadler
for useful discussions on aspects of the language.

References

[1] J. Armstrong, R. Virding, C. Wikström, and
M. Williams. Concurrent Programming in Erlang.
Prentice-Hall, second edition, 1996.

[2] A. Bergel, S. Ducasse, and R. Wuyts. Classboxes: A
Minimal Module Model Supporting Local Rebinding.
In Proc. JMLC 2003, volume 2789 of Springer LNCS,
pages 122�131, 2003.

[3] S. Boag, D. Chamberlin, M. F. Fermandez, D. Flo-
rescu, J. Robie, and J. Simon. XQuery 1.0:
An XML Query Language. W3c recommenda-
tion, World Wide Web Consortium, November 2003.
http://www.w3.org/TR/xquery/.

[4] D. Bonniot and B. Keller. The Nice's user's manual, 2003.
http://nice.sourceforge.net/NiceManual.pdf.

[5] F. Bourdoncle and S. Merz. Type-checking Higher-Order
Polymorphic Multi-Methods. In Conference Record of
POPL '97: The 24th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pages 15�
17, Paris, France, 1997.

[6] G. Bracha and W. Cook. Mixin-Based Inheritance. In
N. Meyrowitz, editor, Proceedings of ECOOP '90, pages
303�311, Ottawa, Canada, October 1990. ACM Press.

[7] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,
and F. Yergeau, eds. Extensible Markup Language
(XML) 1.0. W3C recommendation, World Wide
Web Consortium, February 2004. Available online
http://www.w3.org/TR/REC-xml-20040204/.

[8] K. B. Bruce, M. Odersky, and P. Wadler. A Statically Safe
Alternative to Virtual Types. Lecture Notes in Computer
Science, 1445, 1998. Proc. ESOP 1998.

[9] K. B. Bruce, A. Schuett, and R. van Gent. PolyTOIL: A
Type-Safe Polymorphic Object-Oriented Language. In Pro-
ceedings of ECOOP '95, LNCS 952, pages 27�51, Aarhus,
Denmark, August 1995. Springer-Verlag.

[10] P. Canning, W. Cook, W. Hill, W. Oltho�, and J. Mitchell.
F-Bounded Quanti�cation for Object-Oriented Program-
ming. In Proc. of 4th Int. Conf. on Functional Programming
and Computer Architecture, FPCA'89, London, pages 273�
280, New York, Sep 1989. ACM Pres.

[11] L. Cardelli, S. Martini, J. C. Mitchell, and A. Scedrov. An
Extension of System F with Subtyping. Information and
Computation, 109(1�2):4�56, 1994.

[12] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein.
MultiJava: Design Rationale, Compiler Implementation,
and User Experience. Technical Report 04-01, Iowa State
University, Dept. of Computer Science, Jan 2004.

[13] D. Duggan. Mixin modules. In ACM SIGPLAN Interna-
tional Conference on Functional Programming, 1996.

[14] ECMA. C# Language Speci�cation. Technical Report Stan-
dard ECMA-334, 2nd Edition, European Computer Manu-
facturers Association, December 2002.

[15] ECMA. Common Language Infrastructure. Technical Re-
port Standard ECMA-335, 2nd Edition, European Com-
puter Manufacturers Association, December 2002.

[16] E. Ernst. Family polymorphism. In Proceedings of the Eu-
ropean Conference on Object-Oriented Programming, pages
303�326, Budapest, Hungary, 2001.

[17] E. Ernst. Higher-Order Hierarchies. In L. Cardelli, editor,
Proceedings ECOOP 2003, LNCS 2743, pages 303�329, Hei-
delberg, Germany, July 2003. Springer-Verlag.

[18] D. C. Fallside, editor. XML Schema. W3C recommendation,
World Wide Web Consortium, May 2001. Available online
http://www.w3.org/TR/xmlschema-0/.

[19] K. Fisher and J. H. Reppy. The Design of a Class Mecha-
nism for Moby. In SIGPLAN Conference on Programming
Language Design and Implementation, pages 37�49, 1999.

23

[20] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, Massachusetts, 1994.

[21] A. Goldberg and D. Robson. Smalltalk-80: The Language
and Its Implementation. Addison-Wesley, 1983.

[22] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Lan-
guage Speci�cation. Java Series, Sun Microsystems, second
edition, 2000.

[23] R. Harper and M. Lillibridge. A Type-Theoretic Approach
to Higher-Order Modules with Sharing. In Proc. 21st ACM
Symposium on Principles of Programming Languages, Jan-
uary 1994.

[24] T. Hirschowitz and X. Leroy. Mixin Modules in a Call-by-
Value Setting. In European Symposium on Programming,
pages 6�20, 2002.

[25] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java:
A minimal core calculus for Java and GJ. In Proceedings of
the Conference on Object-Oriented Programming, Systems,
Languages & Applications, volume 34(10), pages 132�146,
1999.

[26] A. Igarashi and M. Viroli. Variant Parametric Types: A
Flexible Subtyping Scheme for Generics. In Proceedings of
the Sixteenth European Conference on Object-Oriented Pro-
gramming (ECOOP2002), pages 441�469, June 2002.

[27] M. P. Jones. Using parameterized signatures to express mod-
ular structure. In Proceedings of the 23rd ACM Sympo-
sium on Principles of Programming Languages, pages 68�
78. ACM Press, 1996.

[28] R. Keller and U. Hölzle. Binary Component Adaptation. In
Proceedings ECOOP, Springer LNCS 1445, pages 307�329,
1998.

[29] X. Leroy. Manifest Types, Modules and Separate Compila-
tion. In Proc. 21st ACM Symposium on Principles of Pro-
gramming Languages, pages 109�122, January 1994.

[30] O. L. Madsen and B. Moeller-Pedersen. Virtual Classes - A
Powerful Mechanism for Object-Oriented Programming. In
Proc. OOPSLA'89, pages 397�406, October 1989.

[31] S. McDirmid, M. Flatt, and W. Hsieh. Jiazzi: New-age
Components for Old-Fashioned Java. In Proc. of OOPSLA,
October 2001.

[32] N. Nystrom, S. Chong, and A. Myers. Scalable Extensibility
via Nested Inheritance. In Proc. OOPSLA, Oct 2004.

[33] Oasis. RELAX NG. See http://www.oasis-open.org/.

[34] M. Odersky and al. The Scala Language Speci�cation. Tech-
nical report, EPFL Lausanne, Switzerland, Jan. 2004. Avail-
able online http://scala.epfl.ch.

[35] M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A
nominal theory of objects with dependent types. In Proc.
ECOOP'03, Springer LNCS 2743, July 2003.

[36] M. Odersky and P. Wadler. Pizza into Java: Translating
theory into practice. In Proc. 24th ACM Symposium on
Principles of Programming Languages, pages 146�159, Jan-
uary 1997.

[37] M. Odersky, P. Wadler, and M. Wehr. A Second Look at
Overloading. In Proc. ACM Conf. on Functional Program-
ming and Computer Architecture, pages 135�146, June 1995.

[38] M. Odersky, C. Zenger, and M. Zenger. Colored Local Type
Inference. In Proceedings of the 28th ACM Symposium on
Principles of Programming Languages, pages 41�53, Lon-
don, UK, January 2001.

[39] K. Ostermann. Dynamically Composable Collaborations
with Delegation Layers. In Proceedings of the 16th Euro-
pean Conference on Object-Oriented Programming, Malaga,
Spain, 2002.

[40] B. C. Pierce and D. N. Turner. Local Type Inference. In
Proc. 25th ACM Symposium on Principles of Programming
Languages, pages 252�265, New York, NY, 1998.

[41] N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black. Traits:
Composable Units of Behavior. In Proceedings of the
17th European Conference on Object-Oriented Program-
ming, Darmstadt, Germany, June 2003.

[42] D. Stoutamire and S. M. Omohundro. The Sather 1.0 Spec-
i�cation. Technical Report TR-95-057, International Com-
puter Science Institute, Berkeley, 1995.

[43] M. Torgersen, C. P. Hansen, E. Ernst, P. vod der Ahé,
G. Bracha, and N. Gafter. Adding Wildcards to the Java
Programming Language. In Proceedings SAC 2004, Nicosia,
Cyprus, March 2004.

[44] P. Wadler. The Essence of Functional Programming. In
Proc.19th ACM Symposium on Principles of Programming
Languages, pages 1�14, January 1992.

[45] P. Wadler and S. Blott. How to make ad-hoc Polymorphism
less ad-hoc. In Proc. 16th ACM Symposium on Principles
of Programming Languages, pages 60�76, January 1989.

[46] M. Zenger. Erweiterbare Übersetzer. Master's thesis, Uni-
versity of Karlsruhe, August 1998.

[47] M. Zenger. Type-Safe Prototype-Based Component Evolu-
tion. In Proceedings of the European Conference on Object-
Oriented Programming, Málaga, Spain, June 2002.

[48] M. Zenger. Programming Language Abstractions for Ex-
tensible Software Components. PhD thesis, Department of
Computer Science, EPFL, Lausanne, March 2004.

[49] M. Zenger and M. Odersky. Extensible Algebraic Datatypes
with Defaults. In Proceedings of the International Confer-
ence on Functional Programming, Firenze, Italy, September
2001.

24

	Introduction
	A Java-Like Language
	A Unified Object Model
	Classes
	Operations
	Variables and Properties

	Operations Are Objects
	Methods are Functional Values
	Functions are Objects
	Refining Functions
	Sequences
	For Comprehensions

	Abstraction
	Functional Abstraction
	Abstract Members
	Modeling Generics with Abstract Types

	Composition
	Class Reuse
	Traits
	Layering Classes and Traits
	Service-Oriented Component Model

	Decomposition
	Object-Oriented Decomposition
	Pattern Matching Over Class Hierarchies

	XML Processing
	Data Model
	Schema Validation
	Regular Sequence Pattern Matching
	XML Queries through For Comprehension

	Autonomous Components
	Component Adaptation
	Views
	View Bounds
	Conditional Views

	Implementation
	Parsing
	Code Analysis
	Functions with def parameters
	Curried Functions
	Pattern Matching Expressions
	Local Classes and Functions
	Inner Classes
	Mixin Expansion
	Type Mapping
	Type Erasure
	Code Generation
	Implementation Language

	Scala for .NET
	Class and Method Mappings
	Properties
	Value Types

	Related Work
	Conclusion

