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Abstract
Purpose To assess the diagnostic performance of three-dimensional (3D) CT-based texture features (TFs) using a convolu-
tional neural network (CNN)-based framework to differentiate benign (osteoporotic) and malignant vertebral fractures (VFs).
Methods A total of 409 patients who underwent routine thoracolumbar spine CT at two institutions were included. VFs 
were categorized as benign or malignant using either biopsy or imaging follow-up of at least three months as standard of 
reference. Automated detection, labelling, and segmentation of the vertebrae were performed using a CNN-based framework 
(https:// anduin. bones creen. de). Eight TFs were extracted:  Varianceglobal,  Skewnessglobal, energy, entropy, short-run emphasis 
(SRE), long-run emphasis (LRE), run-length non-uniformity (RLN), and run percentage (RP). Multivariate regression models 
adjusted for age and sex were used to compare TFs between benign and malignant VFs.
Results Skewnessglobal showed a significant difference between the two groups when analyzing fractured vertebrae from 
T1 to L6 (benign fracture group: 0.70 [0.64–0.76]; malignant fracture group: 0.59 [0.56–0.63]; and p = 0.017), suggesting 
a higher skewness in benign VFs compared to malignant VFs.
Conclusion Three-dimensional CT-based global TF skewness assessed using a CNN-based framework showed significant 
difference between benign and malignant thoracolumbar VFs and may therefore contribute to the clinical diagnostic work-
up of patients with VFs.

Keywords Automated segmentation · Texture analysis · Computed tomography · Bone microstructure · Convolutional 
neural network

Introduction

CT-based texture analysis (TA) is a growing and representa-
tive subfield of radiomics and represents both a non-inva-
sive and quantitative method for the assessment of medical Michael Dieckmeyer and Alexandra S. Gersing have contributed 
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images. Texture features (TFs) allow for quantitative charac-
terization of image properties, such as uniformity, heteroge-
neity, and randomness, as well as repetitive image patterns 
[1]. Thus, TA enables the extraction of additional diagnostic, 
predictive, and prognostic information beyond what is visu-
ally perceptive [2, 3]. Recently, TA methods have been used 
in different radiological subfields, such as neuroimaging or 
musculoskeletal imaging providing additional information 
regarding diagnosis or patients’ outcomes in various dis-
eases [2, 4].

The differentiation between benign (osteoporotic) verte-
bral fractures (VFs) on the one hand, and malignant VFs 
due to underlying metastases on the other hand, based on 
CT imaging only is a frequent challenge in clinical practice 
and of emerging importance within the aging population. 
Up to 10% of all cancer patients develop symptomatic bone 
metastases during the course of the illness [5], and vertebral 
metastases account for up to 39% of all bone metastases [6]. 
Benign and malignant VFs are characterized by microarchi-
tectural deterioration of osseous tissue and decreased bone 
mineral density (BMD) with associated fracture risk, since 
the three-dimensional (3D) trabecular bone architecture is 
impaired in both entities [7–11]. All the more, the differen-
tiation between benign and malignant VFs is crucial due to 
the very different clinical work-up pathways. Making this 
even more challenging, a history of malignancy does not 
necessarily imply a tumorous osseous infiltration with sub-
sequent malignant fracture. Malignant entities are frequently 
associated with either cancer- or treatment-induced BMD 
reduction, and both the primary condition and antitumoral 
therapies may thus lead to increased bone fragility and as a 
consequence can cause benign VFs in patients with a history 
of cancer [12, 13].

Standard morphological CT is the most suitable imaging 
technique for clinical routine work-up of bony tissues in gen-
eral as it provides high spatial resolution and the possibility 
of reformation in three dimensions [13], while CT-based TA 
enables a more detailed assessment of the trabecular bone 
microarchitecture [1]. Thus, the differentiation of benign and 
malignant VFs represents a promising clinical application 
of CT-based TA.

In recent years, the deep learning (DL) approach using 
layers of convolutional neural networks (CNNs) has become 
frequently applied in many different settings and was able to 
increase both efficiency and accuracy in segmentation tasks. 
A fully automated framework (https:// anduin. bones creen. 
de), which enables an instant segmentation of vertebrae in 
any CT data set, has recently been introduced, particularly 
for opportunistic osteoporosis screening and related applica-
tions [9, 14–18].

The aim of this study was to investigate the diagnostic per-
formance of 3D TFs derived from clinical routine CT using a 
CNN-based segmentation framework in order to differentiate 

benign and malignant thoracolumbar VFs. We hypothesized 
that the use of CT-based 3D TFs could improve the differentia-
tion between benign and malignant VFs.

Materials and methods

The utilized workflow of this study is illustrated in Fig. 1.

Subjects

In total, 409 consecutive patients (198 females, 211 males, 
mean age = 67.5 ± 16.3 years, age range = 17.9–94.3 years) 
who received a multidetector CT (MDCT) of the thora-
columbar spine with a standard clinical routine protocol 
between April 2010 and April 2020 at two institutions were 
retrospectively included. Inclusion criteria were (1) acqui-
sition of MDCT of the spine of at least T1 to L5 and (2) at 
least one osteoporotic or metastatic VF of the thoracolumbar 
spine. Exclusion criteria were (1) age below 18 years, (2) 
traumatic VFs, (3) motion artifacts in imaging data, (4) pre-
vious spine surgery, (5) inflammatory processes with related 
bone marrow changes such as spondylodiscitis according 
to MRI findings, and (6) pregnant or breastfeeding women. 
The present study was approved by the Institutional Review 
Board of both institutions. Due to the retrospective study 
design, informed consent requirement was waived.

CT image acquisition

Image acquisition was performed in supine position using 
MDCT scanners (Brilliance 64, Ingenuity CT, Philips 
Healthcare; Somatom Definition AS+, Somatom Sensa-
tion Cardiac 64, Somatom Drive, Somatom Force, Siemens 
Healthineers). An initial scout scan was used for planning 
the field of view and subsequent helical scanning with a peak 
tube voltage of 120 kVp or 130 kVp, and adaptive tube load 
was acquired. Some of the scans were performed after the 
application of both oral (Barilux Scan, Sanochemia Diag-
nostics) and/or intravenous (Imeron 400, Bracco) contrast 
agent. Sagittal reformations of the spine with a slice thick-
ness ≤ 3 mm were reconstructed with a standard bone kernel 
and were used for CNN-based segmentation and subsequent 
TA.

Reference standard to categorize fractures 
as benign or malignant

Standard of reference for malignant VFs was either the histo-
logical analysis if a biopsy of the vertebra was performed or 
PET-CT, scintigraphy, and MRI confirming metastatic bone 
disease. VFs were considered benign if fulfilling all of the 
following criteria: no positive biopsy result (biopsy could 
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be absent or negative) and no malignancy criteria found at 
baseline and imaging follow-up (≥ 3 months). All images 
were assessed by three board-certified radiologists (SSG, 
ASG, and JSK with 4, 11, and 15 years of radiological expe-
rience, respectively). In unclear cases, consensus readings 
were performed.

Automated deep learning‑based CT image 
segmentation

For image segmentation, the anonymized CT data were 
exported from the local PACS as Neuroimaging Informatics 
Technology Initiative (NIfTI) data. The vertebrae T1 to L6 
were automatically segmented in the MDCT images using a 
DL-driven framework (https:// anduin. bones creen. de) [17]. 
The pipeline fully automatically identifies and labells each 
vertebra and creates corresponding segmentation masks. The 
generated labels and segmentation masks of all vertebrae 
were checked visually by two radiology residents (SCF and 
DS with 4 and 2 years of experience, respectively) in order 
to verify the CNN-based segmentations. Representative data 
sets of the thoracolumbar spine with corresponding annota-
tions and segmentation masks are shown in Fig. 2.

Texture analysis

TA was performed on the postprocessed image data sets. 
All TFs were calculated for the region of interest (ROI) 
corresponding to each segmented vertebral body. The 

selection of analyzed TFs was based on previous studies 
[1, 19, 20]. We extracted a total of eight TFs: two of them 
were global features (variance and skewness), also referred 
to as first-order statistical moments, which are computed by 
gray-level histogram analysis, two were second-order fea-
tures (energy and entropy), which are based on gray-level 
co-occurrence matrix (GLCM) analysis, and four were 
higher-order features (SRE, LRE, RLN, and RP), based on 
gray-level run-length matrix (GLRLM) analysis, as previ-
ously described [1]. Table 1 illustrates the TFs extracted 
in this study together with descriptions of each quantified 
image property. In order to generate isotropic volumes of 
the image data sets necessary for comparable TA results, 
cubic interpolation was used. To prevent sparseness, gray-
level quantization was performed using the normalized gray 
levels (scale 0–1) of the ROI corresponding to each vertebral 
body. All steps of the TA were performed with MATLAB 
(version R2021a; MathWorks Inc., Natick, MA, USA) using 
a modified version of a publicly available radiomics toolbox 
(https:// github. com/ mvall ieres/ radio mics) [21].

Statistical analysis

Statistical analysis was performed with SPSS (version 28; 
IBM SPSS Statistics for macOS, IBM Corp., Armonk, NY, 
USA) using a two-sided level of significance of 0.05 for all 
statistical tests. Shapiro–Wilk test was performed to test for 
normal distribution of the data. Multivariate regression analy-
sis adjusted for age and sex was performed for comparison 

Fig. 1  Flowchart illustrating the study’s workflow. Clinical rou-
tine MDCT scans of the thoracolumbar spine of patients with either 
malignant A or benign B VFs have been identified and were retro-
spectively included. In a second step, the DICOM data were con-
verted into NIfTI-files and automated labelling and segmentation of 
the thoracolumbar spine (T1-L6) was done using a DL-based algo-
rithm (A, B). Thereafter, TA was performed on the postprocessed 

images by calculating all TFs for the ROI corresponding to each 
segmented vertebral body (A, B). TF results were analyzed and com-
pared between the patient cohort with malignant, respectively, benign 
VFs (A, B). DICOM Digital Imaging and Communications in Medi-
cine, DL deep learning, MDCT multidetector CT, NIfTI Neuroimag-
ing Informatics Technology Initiative, TA texture analysis, TF texture 
feature, and VF vertebral fracture

https://anduin.bonescreen.de
https://github.com/mvallieres/radiomics
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of TFs between the benign and malignant fracture cohorts. 
The fracture status (benign versus malignant VF) was used as 
dependent variable, while the different TFs were independent 
variables. Due to the large number of parameters, the analyses 
were split into the following categories (based on previously 

published data [1, 20]): primary data (global features, energy, 
entropy); exploratory data (SRE, LRE, RLN, and RP).

Results

Comparison of benign and malignant fractured 
vertebrae T1 to L6

A total of 228 fractured vertebrae were analyzed in n = 187 
patients with benign VFs (nT1 = 0, nT2 = 0; nT3 = 4, nT4 = 2, 
nT5 = 3, nT6 = 2, nT7 = 15, nT8 = 4, nT9 = 3, nT10 = 4, nT11 = 19, 
nT12 = 24, nL1 = 52, nL2 = 36, nL3 = 29, nL4 = 17, nL5 = 13, 
nL6 = 1), while n = 308 fractured vertebrae were evaluated 
in a total of n = 222 patients with malignant VFs (nT1 = 11, 
nT2 = 4, nT3 = 5, nT4 = 3, nT5 = 8, nT6 = 10, nT7 = 14, nT8 = 5, 
nT9 = 10, nT10 = 9, nT11 = 19, nT12 = 24, nL1 = 34, nL2 = 42, 
nL3 = 38, nL4 = 36, nL5 = 36).  Skewnessglobal showed a sta-
tistically significant difference between the two groups 
(p = 0.017), while all other TFs  (Varianceglobal, energy, 
entropy, SRE, LRE, RLN, and RP) showed no statistically 
significant difference between benign and malignant frac-
tured vertebrae (Table 2).

Discussion

An automated CNN-based spine segmentation and extrac-
tion of TFs of thoracolumbar vertebral bodies in routine 
MDCT scans was performed, showing statistically higher 

Fig. 2  Exemplary illustration of the labelling and segmentation pro-
cess. a, d Sagittal reformations of the thoracolumbar spine (T1–L5) 
with a slice thickness of 2  mm and a standard bone kernel in a a 
patient with multiple osteoporotic fractures of T7, T9, T10, T12, and 

L1 and d a patient with a metastatic fracture of L5. b, e Annotation of 
all vertebrae from T1 to L5. c, f Automated labelling and segmenta-
tion of vertebrae T1 to L5 using the CNN-based framework

Table 1  Global (histogram-based), gray-level co-occurrence matrix 
(GLCM)-based, and gray-level run-length matrix (GLRLM)-based 
texture features and descriptions

GLCM gray-level co-occurrence matrix, GLRLM gray-level run-
length matrix, SRE short-run emphasis, LRE long-run emphasis, RLN 
run-length non-uniformity, RP run percentage, and table adapted 
from [1]

Category Texture feature Description/quantifica-
tion of:

Global (Histogram) Variance Spread of gray-level 
distribution

Skewness Shape of gray-level 
distribution

Second-order (GLCM) Energy Uniformity
Entropy Randomness
SRE Short-run distribution

Higher-order (GLRLM) LRE Long-run distribution
RLN Similarities in length of 

runs
RP Distribution and homo-

geneity of runs with a 
specific direction
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values in benign VFs compared to malignant VFs analyzing 
the global TF Skewness. This finding suggests differences in 
microstructural bone changes between benign and malignant 
fractured vertebrae.

Dimension reduction and feature selection are commonly 
performed steps in TA. During the selection process, it needs 
to be ensured that the selected TFs fulfill certain criteria 
and are of high relevance [1]. GLCM- and GLRLM-derived 
TFs may be restricted to or averaged across directions and 
distances [22, 23]. The selection of reproducible TFs with 
high inter- and intra-reader agreement is a further common 
approach chosen [22, 24]. Furthermore, correlation analy-
sis can be performed in order to identify and consecutively 
exclude highly correlating TFs for redundancy reduction 
purposes [22]. With the rise of machine learning capabili-
ties, further feature reduction methods emerged, such as 
using a random forest classifier to identify VFs to optimize 
the number of TFs based on the Gini importance and clas-
sification performance in an exponential search [25]. In 
another study, a more clinically driven approach was chosen, 
selecting TFs based on a preceding long-term reproducibil-
ity analysis to identify TFs, which are particularly suitable 
for long-term comparisons. With this background, we con-
sciously selected the most promising TFs as well as vertebral 
levels based on the following relevant findings from three 
previous studies: in a first study, TFs from the histogram as 
well as second-order TFs applied to CT scans were able to 
predict radiation-induced insufficiency fractures in patients 
undergoing radiation therapy for pelvic malignancies [20]. 
Analyzing three ROIs (L5, sacrum, both femoral heads), the 
authors identified L5-energy, and femoral head-skewness, as 
the significant parameters to stratify the risk of patients to 
develop radiation-induced insufficiency fractures in logistic 

regression analysis [20]. A second relevant study identified 
a total of six TFs of the thoracolumbar spine  (Varianceglobal, 
entropy, SRE, LRE, RLN, and RP), which were long-term 
reproducible when characterizing gender-, age-, and region-
specific vertebral bone microstructure on routine abdominal 
MDCT [1]. A third previous study found that level-specific 
volumetric BMD using opportunistic QCT is a significant 
classifier of incident VF status for both single vertebral lev-
els from T1 to L5 as well as for all analyzed combinations 
of four consecutive vertebral bodies. [19].

To the best of our knowledge, this is the first study ana-
lyzing the diagnostic performance of 3D CT-based TFs 
using a CNN-based framework to differentiate benign and 
malignant VFs. A recently published study on CT radiom-
ics developed and validated an automated algorithm for 
segmentation of fractured vertebrae on CT and evaluated 
the applicability of this algorithm in a radiomics prediction 
model to differentiate a total of 341 benign and malignant 
VFs from 158 patients [26]. The authors validated their algo-
rithm on independent test sets and constructed a radiomics 
model predicting fracture malignancy on CT. Further, they 
compared the prediction performance between automated 
and human segmentations. An automated segmentation 
algorithm that showed comparable performance to human 
expert segmentations in a CT radiomics model was devel-
oped and validated in order to predict fracture malignancy 
[26]. Accordingly, the CNN-based segmentation algorithm 
that we used in the present study also has been proven to be 
valid and accurate in several previous studies [9, 14–18]. 
However, the study by Park et al. and our study have key 
differences. Firstly, the TFs chosen by the authors [26] are 
only to a small extent comparable to the TFs we chose in our 
study. Secondly, we also analyzed non-fractured vertebrae, 

Table 2  Comparison of TFs between the benign and malignant fracture group analyzing all fractured vertebrae from T1 to L5

The associations between benign and malignant fractured vertebrae (T1–L5) and TFs were assessed using multivariable regression models 
adjusting for age and sex
TF texture feature, VF vertebral fracture, SRE short-run emphasis, LRE long-run emphasis, RLN run-length non-uniformity, and RP run percent-
age
*TF results are given as adjusted values for each fractured vertebra in both the benign and malignant fracture cohort. Results were rounded up to 
two respectively three decimal places
Significant results (p < 0.05) are bolded

Texture feature [VF T1–L5] * Benign patient group (n = 187) Malignant patient group (n = 222) p value

Varianceglobal 46.18 [44.91–47.46] 46.30 [45.16–47.44] 0.64
Skewnessglobal 0.70 [0.64–0.76] 0.59 [0.56–0.63] 0.017
Energy 1.99 ×  10–5 [1.88 ×  10–5-2.12 ×  10–5] 2.19 ×  10–5 [2.07 ×  10–5-2.32 ×  10–5] 0.22
Entropy 16.18 [16.13–16.24] 16.20 [16.15–16.25] 0.29
SRE 0.99 [0.98–1.00] 0.99 [0.98–1.00] 0.48
LRE 1.01 [1.01–1.02] 1.01 [1.01–1.02] 0.48
RLN 0.99 [0.98–1.00] 0.99 [0.98–1.00] 0.48
RP 0.99 [0.98–1.00] 0.99 [0.98–1.00] 0.48
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as the CNN-based segmentation pipeline we used labells and 
segments both fractured and non-fractured vertebrae, while 
only fractured vertebrae were analyzed in this previous study 
[26]. Thirdly, our patient cohort was significantly larger (409 
vs. 158 patients) [26].

Based on current literature, TF extraction using a DL-
based pipeline may add important value to future routine 
clinical practice in cases in which VFs need to be classified 
further into benign or malignant fractures [1, 19, 26, 27]. 
This becomes particularly important for the individual diag-
nostic work-up of the patient, potentially resulting in further 
MRI, PET-CT imaging, or biopsy to initiate the adequate 
therapy without any delay.

Analyzing fractured vertebrae, the global TF skewness, 
which reflects the shape of gray-level distribution, showed 
a significant difference between the benign and malignant 
fracture group with higher values in benign fractures. Inter-
estingly, in a previous study, this TF—analyzing the femoral 
head—was able to stratify patients into those who devel-
oped and those who did not develop an insufficiency fracture 
[20]. In summary, there are indications that the global TF 
skewness might be useful both in the field of differentiating 
benign, respectively, malignant VFs and in fracture predic-
tion, e.g., the development of insufficiency fractures as dis-
cussed above.

This study has several limitations. Firstly, we used a 
retrospective study design with related potential selection 
and referral bias. However, we used a high-quality stand-
ard of reference for the differentiation between benign and 
malignant VFs. Secondly, we did not evaluate the potential 
impact of contrast agent on texture analysis, which of course 
might have an influence and needs to be analyzed in bigger 
study cohorts. Thirdly, we did not analyze any bone-related 
health data such as weight and height, body mass index, 
corticosteroid therapy, or smoking status in our study, which 
are known to have an influence on bone quality. Combined 
radiomics–clinical models might be superior compared with 
radiomics models alone, e.g., in predicting malignancy of 
VFs on CT [27]. Yet, the purpose of this study was to evalu-
ate the diagnostic performance of CT-based 3D TFs using 
a CNN-based segmentation framework for the differen-
tiation of benign and malignant VFs and not to investigate 
whether the use of clinical information might improve the 
algorithm’s performance. And as a last point, the analyzed 
set of TFs was limited in order to avoid statistical errors due 
to multiple testing.

Conclusion

In conclusion, DL-based extraction of global CT-based 3D 
TFs was feasible and the global TF skewness showed sig-
nificant differences between patients with benign and those 

with malignant VFs of the thoracolumbar spine. This sug-
gests that DL-based TF extraction for the classification of 
benign versus malignant VFs might add relevant diagnostic 
information and therefore enhance the clinical work-up of 
diagnostics of VFs.
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