61 research outputs found
Conceptual aspects of line tensions
We analyze two representative systems containing a three-phase-contact line:
a liquid lens at a fluid--fluid interface and a liquid drop in contact with a
gas phase residing on a solid substrate. We discuss to which extent the
decomposition of the grand canonical free energy of such systems into volume,
surface, and line contributions is unique in spite of the freedom one has in
positioning the Gibbs dividing interfaces. In the case of a lens it is found
that the line tension is independent of arbitrary choices of the Gibbs dividing
interfaces. In the case of a drop, however, one arrives at two different
possible definitions of the line tension. One of them corresponds seamlessly to
that applicable to the lens. The line tension defined this way turns out to be
independent of choices of the Gibbs dividing interfaces. In the case of the
second definition,however, the line tension does depend on the choice of the
Gibbs dividing interfaces. We provide equations for the equilibrium contact
angles which are form-invariant with respect to notional shifts of dividing
interfaces which only change the description of the system. Conceptual
consistency requires to introduce additional stiffness constants attributed to
the line. We show how these constants transform as a function of the relative
displacements of the dividing interfaces. The dependences of the contact angles
on lens or drop volumes do not render the line tension alone but a combination
of the line tension, the Tolman length, and the stiffness constants of the
line.Comment: 34 pages, 9 figure
Contact line stability of ridges and drops
Within the framework of a semi-microscopic interface displacement model we
analyze the linear stability of sessile ridges and drops of a non-volatile
liquid on a homogeneous, partially wet substrate, for both signs and arbitrary
amplitudes of the three-phase contact line tension. Focusing on perturbations
which correspond to deformations of the three-phase contact line, we find that
drops are generally stable while ridges are subject only to the long-wavelength
Rayleigh-Plateau instability leading to a breakup into droplets, in contrast to
the predictions of capillary models which take line tension into account. We
argue that the short-wavelength instabilities predicted within the framework of
the latter macroscopic capillary theory occur outside its range of validity and
thus are spurious.Comment: 6 pages, 1 figur
Influence of Biopsy Technique on Molecular Genetic Tumor Characterization in Non-Small Cell Lung Cancer—The Prospective, Randomized, Single-Blinded, Multicenter PROFILER Study Protocol
The detection of molecular alterations is crucial for the individualized treatment of advanced non-small cell lung cancer (NSCLC). Missing targetable alterations may have a major impact on patient’s progression free and overall survival. Although laboratory testing for molecular alterations has continued to improve; little is known about how biopsy technique affects the detection rate of different mutations. In the retrospective study detection rate of epidermal growth factor (EGFR) mutations in tissue extracted by bronchoscopic cryobiopsy (CB was significantly higher compared to other standard biopsy techniques. This prospective, randomized, multicenter, single blinded study evaluates the accuracy of molecular genetic characterization of NSCLC for different cell sampling techniques. Key inclusion criteria are suspected lung cancer or the suspected relapse of known NSCLC that is bronchoscopically visible. Patients will be randomized, either to have a CB or a bronchoscopic forceps biopsy (FB). If indicated, a transbronchial needle aspiration (TBNA) of suspect lymph nodes will be performed. Blood liquid biopsy will be taken before tissue biopsy. The primary endpoint is the detection rate of molecular genetic alterations in NSCLC, using CB and FB. Secondary endpoints are differences in the combined detection of molecular genetic alterations between FB and CB, TBNA and liquid biopsy. This trial plans to recruit 540 patients, with 178 evaluable patients per study cohort. A histopathological and molecular genetic evaluation will be performed by the affiliated pathology departments of the national network for genomic medicine in lung cancer (nNGM), Germany. We will compare the diagnostic value of solid tumor tissue, lymph node cells and liquid biopsy for the molecular genetic characterization of NSCLC. This reflects a real world clinical setting, with potential direct impact on both treatment and survival
Free energy of colloidal particles at the surface of sessile drops
The influence of finite system size on the free energy of a spherical
particle floating at the surface of a sessile droplet is studied both
analytically and numerically. In the special case that the contact angle at the
substrate equals a capillary analogue of the method of images is
applied in order to calculate small deformations of the droplet shape if an
external force is applied to the particle. The type of boundary conditions for
the droplet shape at the substrate determines the sign of the capillary
monopole associated with the image particle. Therefore, the free energy of the
particle, which is proportional to the interaction energy of the original
particle with its image, can be of either sign, too. The analytic solutions,
given by the Green's function of the capillary equation, are constructed such
that the condition of the forces acting on the droplet being balanced and of
the volume constraint are fulfilled. Besides the known phenomena of attraction
of a particle to a free contact line and repulsion from a pinned one, we
observe a local free energy minimum for the particle being located at the drop
apex or at an intermediate angle, respectively. This peculiarity can be traced
back to a non-monotonic behavior of the Green's function, which reflects the
interplay between the deformations of the droplet shape and the volume
constraint.Comment: 24 pages, 19 figure
Monte Carlo Methods for Estimating Interfacial Free Energies and Line Tensions
Excess contributions to the free energy due to interfaces occur for many
problems encountered in the statistical physics of condensed matter when
coexistence between different phases is possible (e.g. wetting phenomena,
nucleation, crystal growth, etc.). This article reviews two methods to estimate
both interfacial free energies and line tensions by Monte Carlo simulations of
simple models, (e.g. the Ising model, a symmetrical binary Lennard-Jones fluid
exhibiting a miscibility gap, and a simple Lennard-Jones fluid). One method is
based on thermodynamic integration. This method is useful to study flat and
inclined interfaces for Ising lattices, allowing also the estimation of line
tensions of three-phase contact lines, when the interfaces meet walls (where
"surface fields" may act). A generalization to off-lattice systems is described
as well.
The second method is based on the sampling of the order parameter
distribution of the system throughout the two-phase coexistence region of the
model. Both the interface free energies of flat interfaces and of (spherical or
cylindrical) droplets (or bubbles) can be estimated, including also systems
with walls, where sphere-cap shaped wall-attached droplets occur. The
curvature-dependence of the interfacial free energy is discussed, and estimates
for the line tensions are compared to results from the thermodynamic
integration method. Basic limitations of all these methods are critically
discussed, and an outlook on other approaches is given
Chaperoning Roles of Macromolecules Interacting with Proteins in Vivo
The principles obtained from studies on molecular chaperones have provided explanations for the assisted protein folding in vivo. However, the majority of proteins can fold without the assistance of the known molecular chaperones, and little attention has been paid to the potential chaperoning roles of other macromolecules. During protein biogenesis and folding, newly synthesized polypeptide chains interact with a variety of macromolecules, including ribosomes, RNAs, cytoskeleton, lipid bilayer, proteolytic system, etc. In general, the hydrophobic interactions between molecular chaperones and their substrates have been widely believed to be mainly responsible for the substrate stabilization against aggregation. Emerging evidence now indicates that other features of macromolecules such as their surface charges, probably resulting in electrostatic repulsions, and steric hindrance, could play a key role in the stabilization of their linked proteins against aggregation. Such stabilizing mechanisms are expected to give new insights into our understanding of the chaperoning functions for de novo protein folding. In this review, we will discuss the possible chaperoning roles of these macromolecules in de novo folding, based on their charge and steric features
The Flux-Line Lattice in Superconductors
Magnetic flux can penetrate a type-II superconductor in form of Abrikosov
vortices. These tend to arrange in a triangular flux-line lattice (FLL) which
is more or less perturbed by material inhomogeneities that pin the flux lines,
and in high- supercon- ductors (HTSC's) also by thermal fluctuations. Many
properties of the FLL are well described by the phenomenological
Ginzburg-Landau theory or by the electromagnetic London theory, which treats
the vortex core as a singularity. In Nb alloys and HTSC's the FLL is very soft
mainly because of the large magnetic penetration depth: The shear modulus of
the FLL is thus small and the tilt modulus is dispersive and becomes very small
for short distortion wavelength. This softness of the FLL is enhanced further
by the pronounced anisotropy and layered structure of HTSC's, which strongly
increases the penetration depth for currents along the c-axis of these uniaxial
crystals and may even cause a decoupling of two-dimensional vortex lattices in
the Cu-O layers. Thermal fluctuations and softening may melt the FLL and cause
thermally activated depinning of the flux lines or of the 2D pancake vortices
in the layers. Various phase transitions are predicted for the FLL in layered
HTSC's. The linear and nonlinear magnetic response of HTSC's gives rise to
interesting effects which strongly depend on the geometry of the experiment.Comment: Review paper for Rep.Prog.Phys., 124 narrow pages. The 30 figures do
not exist as postscript file
- …