120 research outputs found

    Mouse Pachytene Checkpoint 2 (Trip13) Is Required for Completing Meiotic Recombination but Not Synapsis

    Get PDF
    In mammalian meiosis, homologous chromosome synapsis is coupled with recombination. As in most eukaryotes, mammalian meiocytes have checkpoints that monitor the fidelity of these processes. We report that the mouse ortholog (Trip13) of pachytene checkpoint 2 (PCH2), an essential component of the synapsis checkpoint in Saccharomyces cerevisiae and Caenorhabditis elegans, is required for completion of meiosis in both sexes. TRIP13-deficient mice exhibit spermatocyte death in pachynema and loss of oocytes around birth. The chromosomes of mutant spermatocytes synapse fully, yet retain several markers of recombination intermediates, including RAD51, BLM, and RPA. These chromosomes also exhibited the chiasmata markers MLH1 and MLH3, and okadaic acid treatment of mutant spermatocytes caused progression to metaphase I with bivalent chromosomes. Double mutant analysis demonstrated that the recombination and synapsis genes Spo11, Mei1, Rec8, and Dmc1 are all epistatic to Trip13, suggesting that TRIP13 does not have meiotic checkpoint function in mice. Our data indicate that TRIP13 is required after strand invasion for completing a subset of recombination events, but possibly not those destined to be crossovers. To our knowledge, this is the first model to separate recombination defects from asynapsis in mammalian meiosis, and provides the first evidence that unrepaired DNA damage alone can trigger the pachytene checkpoint response in mice

    An allele separating skeletal patterning and spermatogonial renewal functions of PLZF

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The promyelocytic leukemia zinc finger gene <it>Plzf </it>(also called <it>Zbtb16, Zfp145 </it>or <it>Green's luxoid</it>) belongs to the POZ/zinc-finger family of transcription factors. It contains a BTB/POZ domain that mediates epigenetic transcriptional repression. PLZF is essential for proper skeleton patterning and male germ cell renewal. Two alleles have been reported that display similar phenotypes: a targeted knock-out, and the spontaneous nonsense mutation <it>luxoid</it>.</p> <p>Results</p> <p>We describe a new ENU induced missense allele of <it>Plzf </it>called seven toes (<it>Plzf</it><sup>7<it>t</it></sup>). Homozygous animals exhibit hindlimb and axial skeleton abnormalities. Whereas the skeletal abnormalities are similar to those of the other alleles, <it>Plzf</it><sup>7<it>t </it></sup>differs in that it does not cause spermatogonial depletion and infertility. Positional cloning revealed a point mutation changing the evolutionarily conserved amino acid Glu44 to Gly, possibly altering the BTB domain's activity.</p> <p>Conclusions</p> <p><it>Plzf</it><sup>7<it>t </it></sup>is a separation-of-function allele that reveals differential requirements for domains of PLZF in different developmental milieus.</p

    SEL1L deficiency impairs growth and differentiation of pancreatic epithelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The vertebrate pancreas contains islet, acinar and ductal cells. These cells derive from a transient pool of multipotent pancreatic progenitors during embryonic development. Insight into the genetic determinants regulating pancreatic organogenesis will help the development of cell-based therapies for the treatment of diabetes mellitus. <it>Suppressor enhancer lin12/Notch 1 like (Sel1l</it>) encodes a cytoplasmic protein that is highly expressed in the developing mouse pancreas. However, the morphological and molecular events regulated by <it>Sel1l </it>remain elusive.</p> <p>Results</p> <p>We have characterized the pancreatic phenotype of mice carrying a gene trap mutation in <it>Sel1l</it>. We show that <it>Sel1l </it>expression in the developing pancreas coincides with differentiation of the endocrine and exocrine lineages. Mice homozygous for the gene trap mutation die prenatally and display an impaired pancreatic epithelial morphology and cell differentiation. The pancreatic epithelial cells of <it>Sel1l </it>mutant embryos are confined to the progenitor cell state throughout the secondary transition. Pharmacological inhibition of Notch signaling partially rescues the pancreatic phenotype of <it>Sel1l </it>mutant embryos.</p> <p>Conclusions</p> <p>Together, these data suggest that <it>Sel1l </it>is essential for the growth and differentiation of endoderm-derived pancreatic epithelial cells during mouse embryonic development.</p

    A Dominant, Recombination-Defective Allele of Dmc1 Causing Male-Specific Sterility

    Get PDF
    DMC1 is a meiosis-specific homolog of bacterial RecA and eukaryotic RAD51 that can catalyze homologous DNA strand invasion and D-loop formation in vitro. DMC1-deficient mice and yeast are sterile due to defective meiotic recombination and chromosome synapsis. The authors identified a male dominant sterile allele of Dmc1, Dmc1(Mei11), encoding a missense mutation in the L2 DNA binding domain that abolishes strand invasion activity. Meiosis in male heterozygotes arrests in pachynema, characterized by incomplete chromosome synapsis and no crossing-over. Young heterozygous females have normal litter sizes despite having a decreased oocyte pool, a high incidence of meiosis I abnormalities, and susceptibility to premature ovarian failure. Dmc1(Mei11) exposes a sex difference in recombination in that a significant portion of female oocytes can compensate for DMC1 deficiency to undergo crossing-over and complete gametogenesis. Importantly, these data demonstrate that dominant alleles of meiosis genes can arise and propagate in populations, causing infertility and other reproductive consequences due to meiotic prophase I defects

    Mutation in Mouse Hei10, an E3 Ubiquitin Ligase, Disrupts Meiotic Crossing Over

    Get PDF
    Crossing over during meiotic prophase I is required for sexual reproduction in mice and contributes to genome-wide genetic diversity. Here we report on the characterization of an N-ethyl-N-nitrosourea-induced, recessive allele called mei4, which causes sterility in both sexes owing to meiotic defects. In mutant spermatocytes, chromosomes fail to congress properly at the metaphase plate, leading to arrest and apoptosis before the first meiotic division. Mutant oocytes have a similar chromosomal phenotype but in vitro can undergo meiotic divisions and fertilization before arresting. During late meiotic prophase in mei4 mutant males, absence of cyclin dependent kinase 2 and mismatch repair protein association from chromosome cores is correlated with the premature separation of bivalents at diplonema owing to lack of chiasmata. We have identified the causative mutation, a transversion in the 5′ splice donor site of exon 1 in the mouse ortholog of Human Enhancer of Invasion 10 (Hei10; also known as Gm288 in mouse and CCNB1IP1 in human), a putative B-type cyclin E3 ubiquitin ligase. Importantly, orthologs of Hei10 are found exclusively in deuterostomes and not in more ancestral protostomes such as yeast, worms, or flies. The cloning and characterization of the mei4 allele of Hei10 demonstrates a novel link between cell cycle regulation and mismatch repair during prophase I

    Mouse H6 Homeobox 1 (Hmx1) mutations cause cranial abnormalities and reduced body mass

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The H6 homeobox genes <it>Hmx1</it>, <it>Hmx2</it>, and <it>Hmx3 </it>(also known as <it>Nkx5-3</it>; <it>Nkx5-2 </it>and <it>Nkx5-1</it>, respectively), compose a family within the NKL subclass of the ANTP class of homeobox genes. Hmx gene family expression is mostly limited to sensory organs, branchial (pharyngeal) arches, and the rostral part of the central nervous system. Targeted mutation of either <it>Hmx2 </it>or <it>Hmx3 </it>in mice disrupts the vestibular system. These tandemly duplicated genes have functional overlap as indicated by the loss of the entire vestibular system in double mutants. Mutants have not been described for <it>Hmx1</it>, the most divergent of the family.</p> <p>Results</p> <p>Dumbo (<it>dmbo</it>) is a semi-lethal mouse mutation that was recovered in a forward genetic mutagenesis screen. Mutants exhibit enlarged ear pinnae with a distinctive ventrolateral shift. Here, we report on the basis of this phenotype and other abnormalities in the mutant, and identify the causative mutation as being an allele of <it>Hmx1</it>. Examination of dumbo skulls revealed only subtle changes in cranial bone morphology, namely hyperplasia of the gonial bone and irregularities along the caudal border of the squamous temporal bone. Other nearby otic structures were unaffected. The semilethality of <it>dmbo/dmbo </it>mice was found to be ~40%, occured perinatally, and was associated with exencephaly. Surviving mutants of both sexes exhibited reduced body mass from ~3 days postpartum onwards. Most dumbo adults were microphthalmic. Recombinant animals and specific deletion-bearing mice were used to map the <it>dumbo </it>mutation to a 1.8 Mb region on Chromosome 5. DNA sequencing of genes in this region revealed a nonsense mutation in the first exon of H6 Homeobox 1 (<it>Hmx1</it>; also <it>Nkx5-3</it>). An independent spontaneous allele called misplaced ears (<it>mpe</it>) was also identified, confirming <it>Hmx1 </it>as the responsible mutant gene.</p> <p>Conclusion</p> <p>The divergence of <it>Hmx1 </it>from its paralogs is reflected by different and diverse developmental roles exclusive of vestibular involvement. Additionally, these mutant <it>Hmx1 </it>alleles represent the first mouse models of a recently-discovered Oculo-Auricular syndrome caused by mutation of the orthologous human gene.</p

    High resolution mapping and positional cloning of ENU-induced mutations in the Rw region of mouse chromosome 5

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Forward genetic screens in mice provide an unbiased means to identify genes and other functional genetic elements in the genome. Previously, a large scale ENU mutagenesis screen was conducted to query the functional content of a ~50 Mb region of the mouse genome on proximal Chr 5. The majority of phenotypic mutants recovered were embryonic lethals.</p> <p>Results</p> <p>We report the high resolution genetic mapping, complementation analyses, and positional cloning of mutations in the target region. The collection of identified alleles include several with known or presumed functions for which no mutant models have been reported (<it>Tbc1d14</it>, <it>Nol14</it>, <it>Tyms</it>, <it>Cad</it>, <it>Fbxl5</it>, <it>Haus3</it>), and mutations in genes we or others previously reported (<it>Tapt1</it>, <it>Rest</it>, <it>Ugdh</it>, <it>Paxip1</it>, <it>Hmx1, Otoe, Nsun7</it>). We also confirmed the causative nature of a homeotic mutation with a targeted allele, mapped a lethal mutation to a large gene desert, and localized a spermiogenesis mutation to a region in which no annotated genes have coding mutations. The mutation in <it>Tbc1d14 </it>provides the first implication of a critical developmental role for RAB-GAP-mediated protein transport in early embryogenesis.</p> <p>Conclusion</p> <p>This collection of alleles contributes to the goal of assigning biological functions to all known genes, as well as identifying novel functional elements that would be missed by reverse genetic approaches.</p

    Post-transcriptional homeostasis and regulation of MCM2–7 in mammalian cells

    Get PDF
    The MiniChromosome Maintenance 2-7 (MCM2-7) complex provides essential replicative helicase function. Insufficient MCMs impair the cell cycle and cause genomic instability (GIN), leading to cancer and developmental defects in mice. Remarkably, depletion or mutation of one Mcm can decrease all Mcm levels. Here, we use mice and cells bearing a GIN-causing hypomophic allele of Mcm4 (Chaos3), in conjunction with disruption alleles of other Mcms, to reveal two new mechanisms that regulate MCM protein levels and pre-RC formation. First, the Mcm4Chaos3 allele, which disrupts MCM4:MCM6 interaction, triggers a Dicer1 and Drosha-dependent ∼40% reduction in Mcm2–7 mRNAs. The decreases in Mcm mRNAs coincide with up-regulation of the miR-34 family of microRNAs, which is known to be Trp53-regulated and target Mcms. Second, MCM3 acts as a negative regulator of the MCM2–7 helicase in vivo by complexing with MCM5 in a manner dependent upon a nuclear-export signal-like domain, blocking the recruitment of MCMs onto chromatin. Therefore, the stoichiometry of MCM components and their localization is controlled post-transcriptionally at both the mRNA and protein levels. Alterations to these pathways cause significant defects in cell growth reflected by disease phenotypes in mice

    Extensive disruption of protein interactions by genetic variants across the allele frequency spectrum in human populations

    Get PDF
    Each human genome carries tens of thousands of coding variants. The extent to which this variation is functional and the mechanisms by which they exert their influence remains largely unexplored. To address this gap, we leverage the ExAC database of 60,706 human exomes to investigate experimentally the impact of 2009 missense single nucleotide variants (SNVs) across 2185 protein-protein interactions, generating interaction profiles for 4797 SNV-interaction pairs, of which 421 SNVs segregate at > 1% allele frequency in human populations. We find that interaction-disruptive SNVs are prevalent at both rare and common allele frequencies. Furthermore, these results suggest that 10.5% of missense variants carried per individual are disruptive, a higher proportion than previously reported; this indicates that each individual’s genetic makeup may be significantly more complex than expected. Finally, we demonstrate that candidate disease-associated mutations can be identified through shared interaction perturbations between variants of interest and known disease mutations
    corecore