70 research outputs found
Patient-specific finite element estimated femur strength as a predictor of the risk of hip fracture: the effect of methodological determinants
Summary: A finite element modelling pipeline was adopted to predict femur strength in a retrospective cohort of 100 women. The effects of the imaging protocol and the meshing technique on the ability of the femur strength to classify the fracture and the control groups were analysed. Introduction: The clinical standard to estimate the risk of osteoporotic hip fracture is based on the areal bone mineral density (aBMD). A few retrospective studies have concluded that finite element (FE)-based femoral strength is a better classifier of fracture and control groups than the aBMD, while others could not find significant differences. We investigated the effect of the imaging protocol and of the FE modelling techniques on the discriminatory power of femoral strength. Methods: A retrospective cohort of 100 post-menopausal women (50 with hip fracture, 50 controls) was examined. Each subject received a dual-energy absorptiometry (DXA) exam and a computed tomography (CT) scan of the proximal femur region. Each case was modelled a number of times, using different modelling pipelines, and the results were compared in terms of accuracy in discriminating the fracture and the control cases. The baseline pipeline involved local anatomical orientation and mesh morphing. Revised pipelines involved global anatomical orientation using a full-femur atlas registration and an optimised meshing algorithm. Minimum physiological (MPhyS) and pathological (MPatS) strengths were estimated for each subject. Area under the receiver operating characteristic (ROC) curve (AUC) was calculated to compare the ability of MPhyS, MPatS and aBMD to classify the control and the cases. Results: Differences in the modelling protocol were found to considerably affect the accuracy of the FE predictors. For the most optimised protocol, logistic regression showed aBMD Neck , MPhyS and MPatS to be significantly associated with the facture status, with AUC of 0.75, 0.75 and 0.79, respectively. Conclusion: The study emphasized the necessity of modelling the whole femur anatomy to develop a robust FE-based tool for hip fracture risk assessment. FE-strength performed only slightly better than the aBMD in discriminating the fracture and control cases. Differences between the published studies can be explained in terms of differences in the modelling protocol and cohort design
Linear viscoelasticity - bone volume fraction relationships of bovine trabecular bone
Trabecular bone has been previously recognized as time-dependent (viscoelastic) material, but the relationships of its viscoelastic behaviour with bone volume fraction (BV/TV) have not been investigated so far. Therefore, the aim of the present study was to quantify the time-dependent viscoelastic behaviour of trabecular bone and relate it to BV/TV. Uniaxial compressive creep experiments were performed on cylindrical bovine trabecular bone samples ([Formula: see text] ) at loads corresponding to physiological strain level of 2000 [Formula: see text] . We assumed that the bone behaves in a linear viscoelastic manner at this low strain level and the corresponding linear viscoelastic parameters were estimated by fitting a generalized Kelvin–Voigt rheological model to the experimental creep strain response. Strong and significant power law relationships ([Formula: see text] ) were found between time-dependent creep compliance function and BV/TV of the bone. These BV/TV-based material properties can be used in finite element models involving trabecular bone to predict time-dependent response. For users’ convenience, the creep compliance functions were also converted to relaxation functions by using numerical interconversion methods and similar power law relationships were reported between time-dependent relaxation modulus function and BV/TV
Are CT-Based Finite Element Model Predictions of Femoral Bone Strengthening Clinically Useful?
Purpose of Review: This study reviews the available literature to compare the accuracy of areal bone mineral density derived from dual X-ray absorptiometry (DXA-aBMD) and of subject-specific finite element models derived from quantitative computed tomography (QCT-SSFE) in predicting bone strength measured experimentally on cadaver bones, as well as their clinical accuracy both in terms of discrimination and prediction. Based on this information, some basic cost-effectiveness calculations are performed to explore the use of QCT-SSFE instead of DXA-aBMD in (a) clinical studies with femoral strength as endpoint, (b) predictor of the risk of hip fracture in low bone mass patients. Recent Findings: Recent improvements involving the use of smooth-boundary meshes, better anatomical referencing for proximal-only scans, multiple side-fall directions, and refined boundary conditions increase the predictive accuracy of QCT-SSFE. Summary: If these improvements are adopted, QCT-SSFE is always preferable over DXA-aBMD in clinical studies with femoral strength as the endpoint, while it is not yet cost-effective as a hip fracture risk predictor, although pathways that combine both QCT-SSFE and DXA-aBMD are promising
The influence of rice husk ash addition on the properties of metakaolin-based geopolymers
This paper investigates the replacement of metakaolin (MK) with rice husk ash (RHA) in the production of alkali-activated binders or geopolymers. The influence of the RHA addition on compressive and flexural strength, as well as water absorption and apparent porosity were determined, in terms of the percentage of RHA in the mixture and molar ratios of the mixes. Fourier Transform Infrared (FTIR) spectroscopy and Energy Dispersive spectroscopy (EDS) were carried out to assess the changes in the microstructure of the geopolymer matrices with the RHA addition. Results have shown that RHA may be a supplementary precursor for geopolymers. The composition of the geopolymer matrices containing 0-40% RHA is very similar, which indicates that the additional Si provided by RHA is not incorporated to the geopolymer matrix. In addition, geopolymers with RHA content higher than 40% present a plastic behavior, characterized by extremely low strength and high deformation, which can be attributed to the formation of silica gel in formulations containing variable Si/Al ratio
Non-invasive prediction of the mouse tibia mechanical properties from microCT images: comparison between different finite element models
New treatments for bone diseases require testing in animal models before clinical translation, and the mouse tibia is among the most common models. In vivo micro-Computed Tomography (microCT)-based micro-Finite Element (microFE) models can be used for predicting the bone strength non-invasively, after proper validation against experimental data. Different modelling techniques can be used to estimate the bone properties, and the accuracy associated with each is unclear. The aim of this study was to evaluate the ability of different microCT-based microFE models to predict the mechanical properties of the mouse tibia under compressive load. Twenty tibiae were microCT scanned at 10.4 µm voxel size and subsequently compressed at 0.03 mm/s until failure. Stiffness and failure load were measured from the load–displacement curves. Different microFE models were generated from each microCT image, with hexahedral or tetrahedral mesh, and homogeneous or heterogeneous material properties. Prediction accuracy was comparable among models. The best correlations between experimental and predicted mechanical properties, as well as lower errors, were obtained for hexahedral models with homogeneous material properties. Experimental stiffness and predicted stiffness were reasonably well correlated (R2 = 0.53–0.65, average error of 13–17%). A lower correlation was found for failure load (R2 = 0.21–0.48, average error of 9–15%). Experimental and predicted mechanical properties normalized by the total bone mass were strongly correlated (R2 = 0.75–0.80 for stiffness, R2 = 0.55–0.81 for failure load). In conclusion, hexahedral models with homogeneous material properties based on in vivo microCT images were shown to best predict the mechanical properties of the mouse tibia
A multiscale model to predict current absolute risk of femoral fracture in a postmenopausal population
Osteoporotic hip fractures are a major healthcare problem. Fall severity and bone strength are important risk factors of hip fracture. This study aims to obtain a mechanistic explanation for fracture risk in dependence of these risk factors. A novel modelling approach is developed that combines models at different scales to overcome the challenge of a large space–time domain of interest and considers the variability of impact forces between potential falls in a subject. The multiscale model and its component models are verified with respect to numerical approximations made therein, the propagation of measurement uncertainties of model inputs is quantified, and model predictions are validated against experimental and clinical data. The main results are model predicted absolute risk of current fracture (ARF0) that ranged from 1.93 to 81.6% (median 36.1%) for subjects in a retrospective cohort of 98 postmenopausal British women (49 fracture cases and 49 controls); ARF0 was computed up to a precision of 1.92 percentage points (pp) due to numerical approximations made in the model; ARF0 possessed an uncertainty of 4.00 pp due to uncertainties in measuring model inputs; ARF0 classified observed fracture status in the above cohort with AUC = 0.852 (95% CI 0.753–0.918), 77.6% specificity (95% CI 63.4–86.5%) and 81.6% sensitivity (95% CI 68.3–91.1%). These results demonstrate that ARF0 can be computed using the model with sufficient precision to distinguish between subjects and that the novel mechanism of fracture risk determination based on fall dynamics, hip impact and bone strength can be considered validated
Evaluation of biomechanical response of dental implants assuming anisotropic configuration of bone tissue
Finite element models of dental titanium implants inserted in mandible region are
defined in order to evaluate the biomechanical response under the effect of different
loading types, such as masticatory or occlusal. The mechanical properties of bone tissue
surrounding dental titanium implants deeply influence the implant load carrying
capacity and must be carefully defined to obtain reliable numerical results. Anisotropic
configuration of the tissue and its limit strength in the transition region around the
implant must be evaluated, in order to estimate the response for the specific condition
considered. Assumptions made with regard to the properties of the tissue entails
different values of risk factor, showing the role of an effective definition of anisotropic
bone properties for numerical simulation of the functional response of dental implants
Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro
No agreement on the choice of the failure criterion to adopt for the bone tissue can be found in the literature among the finite element studies aiming at predicting fracture risk of bones. The use of stress-based criteria seems to prevail on strain-based ones, while basic bone biomechanics suggest using strain parameters to describe failure. The aim of the present combined experimental-numerical study was to verify, using subject-specific finite element models able to accurately predict strains, if a strain-based failure criterion could identify the failure patterns of bones. Three cadaver femurs were CT-scanned and subsequently fractured in a clinically relevant single-stance loading scenario. Load-displacement curves and high-speed movies were acquired to define the failure load and the location of fracture onset, respectively. Subject-specific finite element models of the three femurs were built from CT data following a validated procedure. A maximum principal strain criterion was implemented in the finite element models, and two stress-based criteria selected for comparison. The failure loads measured were applied to the models, and the computed risks of fracture were compared to the results of the experimental tests. The proposed principal strain criterion managed to correctly identify the level of failure risk and the location of fracture onset in all the modelled specimens, while Von Mises or maximum principal stress criteria did not give significant information. A maximum principal strain criterion can thus be defined a suitable candidate for the in vivo risk factor assessment on long bones
A numerical approach to resonance frequency analysis for the investigation of oral implant osseointegration
Experimental devices based on vibration
testing are employed as non-destructive procedures
for evaluating implants osseointegration.
Their behaviour was evaluated considering the
outcome of numerical analysis. The purpose was
to use the finite element method for assessing the
ability of frequency analysis in detecting the
degree of oral implant osseointegration. A threedimensional
model of a mandible was obtained
from tomographic survey. A single implant was
considered in canine region. Two configurations
were analysed, with and without a mass linked to
the implant as a cantilever, reproducing experimental
devices. Simulation consisted of analysing
the response to impulse forces for different osseointegration
levels, thus evaluating the biomechanical
efficiency of the implant-bone compound.
A good correlation between frequency response
and osseointegration level was obtained. This was
carried out by providing an impulse excitation of
the implant that resulted in a vibration pattern.
Within the limit of finite element analysis, the
outcomes showed that numerical investigation
provides understanding the behaviour of testing
devices based on frequency measurements, confirming
the potential of vibrations technique as
non-invasive analysis for osseointegration process
- …