10 research outputs found
SxsA, a novel surface protein mediating cell aggregation and adhesive biofilm formation of Staphylococcus xylosus
Biofilm formation of staphylococci has been an emerging field of research for many years. However, the underlying molecular mechanisms are still not fully understood and vary widely between species and strains. The aim of this study was to identify new effectors impacting biofilm formation of two Staphylococcus xylosus strains. We identified a novel surface protein conferring cell aggregation, adherence to abiotic surfaces, and biofilm formation. The S. xylosus surface protein A (SxsA) is a large protein occurring in variable sizes. It lacks sequence similarity to other staphylococcal surface proteins but shows similar structural domain organization and functional features. Upon deletion of sxsA, adherence of S. xylosus strain TMW 2.1523 to abiotic surfaces was completely abolished and significantly reduced in TMW 2.1023. Macro- and microscopic aggregation assays further showed that TMW 2.1523 sxsA mutants exhibit reduced cell aggregation compared with the wildtype. Comparative genomic analysis revealed that sxsA is part of the core genome of S. xylosus, Staphylococcus paraxylosus, and Staphylococcus nepalensis and additionally encoded in a small group of Staphylococcus cohnii and Staphylococcus saprophyticus strains. This study provides insights into protein-mediated biofilm formation of S. xylosus and identifies a new cell wall-associated protein influencing cell aggregation and biofilm formation.Peer Reviewe
Dietary topoisomerase II-poisons
DNA topoisomerases are nuclear enzymes inducing transient breaks in the DNA allowing DNA strands or double helices to pass through each other. The clinically used DNA topoisomerase II-poison etoposide is known to induce DNA double strand breaks leading to chromosomal aberrations and leukemias. Recently, some alarming studies have been published, suggesting that maternal exposure to low doses of dietary topoisomerase II-poisons, including bioflavonoids such as genistein or quercetin, may contribute to the development of infant leukemia: approximately 80% of infants with acute myelogenous leukemia (AML) and acute lymphoblastic leukemia (ALL) have chromosome translocations involving the MLL (mixed lineage leukemia) gene. It has been shown that antineoplastic chemotherapy with the leukemogenic topoisomerase II-poison etoposide induced identical chromosomal aberrations involving the MLL gene compared to children with infant leukemia. Interestingly, the MLL cleavage sites induced by etoposide colocalized with the cleavage sites observed in infant leukemia. In addition, an almost 10-fold higher risk of infant AML has been reported for mothers consuming relatively high levels of topoisomerase II-poison containing foods. These observations are relevant, since many foods contain topoisomerase II-poisons, predominantly soy and soy products, but also coffee, wine, tea, cocao, as well as some fruits and vegetables. Further studies on the role of dietary topoisomerase II-poisons are urgently required. If the causal relationship between dietary exposure to topoisomerase II-poisons and infant leukemia will be confirmed, care should be taken to reduce exposure to critical foods during pregnancy
Expanding the genetic toolbox for the obligate human pathogen Streptococcus pyogenes
Genetic tools form the basis for the study of molecular mechanisms. Despite many recent advances in the field of genetic engineering in bacteria, genetic toolsets remain scarce for non-model organisms, such as the obligatory human pathogen Streptococcus pyogenes. To overcome this limitation and enable the straightforward investigation of gene functions in S. pyogenes, we have developed a comprehensive genetic toolset. By adapting and combining different tools previously applied in other Gram-positive bacteria, we have created new replicative and integrative plasmids for gene expression and genetic manipulation, constitutive and inducible promoters as well as fluorescence reporters for S. pyogenes. The new replicative plasmids feature low- and high-copy replicons combined with different resistance cassettes and a standardized multiple cloning site for rapid cloning procedures. We designed site-specific integrative plasmids and verified their integration by nanopore sequencing. To minimize the effect of plasmid integration on bacterial physiology, we screened publicly available RNA-sequencing datasets for transcriptionally silent sites. We validated this approach by designing the integrative plasmid pSpy0K6 targeting the transcriptionally silent gene SPy_1078. Analysis of the activity of different constitutive promoters indicated a wide variety of strengths, with the lactococcal promoter P23 showing the strongest activity and the synthetic promoter PxylS2 showing the weakest activity. Further, we assessed the functionality of three inducible regulatory elements including a zinc- and an IPTG-inducible promoter as well as an erythromycin-inducible riboswitch that showed low-to-no background expression and high inducibility. Additionally, we demonstrated the applicability of two codon-optimized fluorescent proteins, mNeongreen and mKate2, as reporters in S. pyogenes. We therefore adapted the chemically defined medium called RPMI4Spy that showed reduced autofluorescence and enabled efficient signal detection in plate reader assays and fluorescence microscopy. Finally, we developed a plasmid-based system for genome engineering in S. pyogenes featuring the counterselection marker pheS*, which enabled the scarless deletion of the sagB gene. This new toolbox simplifies previously laborious genetic manipulation procedures and lays the foundation for new methodologies to study gene functions in S. pyogenes, leading to a better understanding of its virulence mechanisms and physiology.Peer Reviewe
Characterization of the major autolysin (AtlC) of Staphylococcus carnosus
Abstract Background Autolysis by cellular peptidoglycan hydrolases (PGH) is a well-known phenomenon in bacteria. During food fermentation, autolysis of starter cultures can exert an accelerating effect, as described in many studies on cheese ripening. In contrast, very little is known about autolysis of starter cultures used in other fermentations. Staphylococcus (S.) carnosus is often used in raw sausage fermentations, contributing to nitrate reduction and flavor formation. In this study, we analyzed the influence of PGHs of the strains S. carnosus TMW 2.146 and S. carnosus TMW 2.2525 on their autolytic behavior. The staphylococcal major autolysin (Atl), a bifunctional enzyme with an N-acetylmuramoyl-L-alanine amidase and a glucosaminidase as an active site, is assumed to be the enzyme by which autolysis is mainly mediated. Results AtlC mutant strains showed impaired growth and almost no autolysis compared to their respective wild-type strains. Light microscopy and scanning electron microscopy showed that the mutants could no longer appropriately separate from each other during cell division, resulting in the formation of cell clusters. The surface of the mutants appeared rough with an irregular morphology compared to the smooth cell surfaces of the wild-types. Moreover, zymograms showed that eight lytic bands of S. carnosus, with a molecular mass between 140 and 35 kDa, are processed intermediates of AtlC. It was noticed that additional bands were found that had not been described in detail before and that the banding pattern changes over time. Some bands disappear entirely, while others become stronger or are newly formed. This suggests that AtlC is degraded into smaller fragments over time. A second knockout was generated for the gene encoding a N-acetylmuramoyl-L-alanine amidase domain-containing protein. Still, no phenotypic differences could be detected in this mutant compared to the wild-type, implying that the autolytic activity of S. carnosus is mediated by AtlC. Conclusions In this study, two knockout mutants of S. carnosus were generated. The atlC mutant showed a significantly altered phenotype compared to the wild-type, revealing AtlC as a key factor in staphylococcal autolysis. Furthermore, we show that Atl is degraded into smaller fragments, which are still cell wall lytic active
Bap-Independent Biofilm Formation in Staphylococcus xylosus
The biofilm associated protein (Bap) is recognised as the essential component for biofilm formation in Staphylococcus aureus V329 and has been predicted as important for other species as well. Although Bap orthologs are also present in most S. xylosus strains, their contribution to biofilm formation has not yet been demonstrated. In this study, different experimental approaches were used to elucidate the effect of Bap on biofilm formation in S. xylosus and the motif structure of two biofilm-forming S. xylosus strains TMW 2.1023 and TMW 2.1523 was compared to Bap of S. aureus V329. We found that despite an identical structural arrangement into four regions, Bap from S. xylosus differs in key factors to Bap of S. aureus, i.e., isoelectric point of aggregation prone Region B, protein homology and type of repeats. Disruption of bap had no effect on aggregation behavior of selected S. xylosus strains and biofilm formation was unaffected (TMW 2.1023) or at best slightly reduced under neutral conditions (TMW 2.1523). Further, we could not observe any typical characteristics of a S. aureus Bap-positive phenotype such as functional impairment by calcium addition and rough colony morphology on congo red agar (CRA). A dominating role of Bap in cell aggregation and biofilm formation as reported mainly for S. aureus V329 was not observed. In contrast, this work demonstrates that functions of S. aureus Bap cannot easily be extrapolated to S. xylosus Bap, which appears as non-essential for biofilm formation in this species. We therefore suggest that biofilm formation in S. xylosus follows different and multifactorial mechanisms
Dephosphorylation of p-ERK1/2 in relation to tumor remission after HER-2 and Raf1 blocking therapy in a conditional mouse tumor model
Several studies have shown that HER-2/neu (erbB-2) blocking therapy strategies can cause tumor remission. However, the responsible molecular mechanisms are not yet known. Both ERK1/2 and Akt/PKB are critical for HER-2-mediated signal transduction. Therefore, we used a mouse tumor model that allows downregulation of HER-2 in tumor tissue by administration of anhydrotetracycline (ATc). Switching-off HER-2 caused a rapid tumor remission by more than 95% within 7 d of ATc administration compared to the volume before switching-off HER-2. Interestingly, HER-2 downregulation caused a dephosphorylation of p-ERK1/2 by more than 80% already before tumor remission occurred. Levels of total ERK protein were not influenced. In contrast, dephosphorylation of p-Akt occurred later, when the tumor was already in remission. These data suggest that in our HER-2 tumor model dephosphorylation of p-ERK1/2 may be more critical for tumor remission than dephosphorylation of p-Akt. To test this hypothesis we used a second mouse tumor model that allows ATc controlled expression of BXB-Raf1 because the latter constitutively signals to ERK1/2, but cannot activate Akt/PKB. As expected, downregulation of BXB-Raf1 in tumor tissue caused a strong dephosphorylation of p-ERK1/2, but did not decrease levels of p-Akt. Interestingly, tumor remission after switching-off BXB-Raf1 was similarly efficient as the effect of HER-2 downregulation, despite the lack of p-Akt dephosphorylation. In conclusion, two lines of evidence strongly suggest that dephosphorylation of p-ERK1/2 and not that of p-Akt is critical for the rapid tumor remission after downregulation of HER-2 or BXB-Raf1 in our tumor model: (i) dephosphorylation of p-ERK1/2 but not that of p-Akt precedes tumor remission after switching-off HER-2 and (ii) downregulation of BXB-Raf1 leads to a similarly efficient tumor remission as downregulation of HER-2, although no p-Akt dephosphorylation was observed after switching-off BXB-Raf1
アジア各国・地域 経済統計
Damage to and loss of glomerular podocytes has been identified as the culprit lesion in progressive kidney diseases. Here, we combine mass spectrometry-based proteomics with mRNA sequencing, bioinformatics, and hypothesis-driven studies to provide a comprehensive and quantitative map of mammalian podocytes that identifies unanticipated signaling pathways. Comparison of the in vivo datasets with proteomics data from podocyte cell cultures showed a limited value of available cell culture models. Moreover, in vivo stable isotope labeling by amino acids uncovered surprisingly rapid synthesis of mitochondrial proteins under steady-state conditions that was perturbed under autophagy-deficient, disease-susceptible conditions. Integration of acquired omics dimensions suggested FARP1 as a candidate essential for podocyte function, which could be substantiated by genetic analysis in humans and knock-down experiments in zebrafish. This work exemplifies how the integration of multi-omics datasets can identify a framework of cell-type-specific features relevant for organ health and disease
The essential cell division protein FtsN interacts with the murein (peptidoglycan) synthase PBP1B in Escherichia coli
Bacterial cell division requires the coordinated action of cell division proteins and murein (peptidoglycan) synthases. Interactions involving the essential cell division protein FtsN and murein synthases were studied by affinity chromatography with membrane fraction. The murein synthases PBP1A, PBP1B, and PBP3 had an affinity to immobilized FtsN. FtsN and PBP3, but not PBP1A, showed an affinity to immobilized PBP1B. The direct interaction between FtsN and PBP1B was confirmed by pulldown experiments and surface plasmon resonance. The interaction was also detected by bacterial two-hybrid analysis. FtsN and PBP1B could be cross-linked in intact cells of the wild type and in cells depleted of PBP3 or FtsW. FtsN stimulated the in vitro murein synthesis activities of PBP1B. Thus, FtsN could have a role in controlling or modulating the activity of PBP1B during cell division in Escherichia coli