5 research outputs found

    Genome-wide association study in patients with posterior urethral valves

    Get PDF
    Congenital lower urinary tract obstructions (LUTO) are most often caused by posterior urethral valves (PUV), a male limited anatomical obstruction of the urethra affecting 1 in 4,000 male live births. Little is known about the genetic background of PUV. Here, we report the largest genome-wide association study (GWAS) for PUV in 4 cohorts of patients and controls. The final meta-analysis included 756 patients and 4,823 ethnicity matched controls and comprised 5,754,208 variants that were genotyped or imputed and passed quality control in all 4 cohorts. No genome-wide significant locus was identified, but 33 variants showed suggestive significance (P < 1 × 10−5). When considering only loci with multiple variants residing within < 10 kB of each other showing suggestive significance and with the same effect direction in all 4 cohorts, 3 loci comprising a total of 9 variants remained. These loci resided on chromosomes 13, 16, and 20. The present GWAS and meta-analysis is the largest genetic study on PUV performed to date. The fact that no genome-wide significant locus was identified, can be explained by lack of power or may indicate that common variants do not play a major role in the etiology of PUV. Nevertheless, future studies are warranted to replicate and validate the 3 loci that yielded suggestive associations

    Genome-wide survey for microdeletions or -duplications in 155 patients with lower urinary tract obstructions (LUTO)

    No full text
    Lower urinary tract obstruction (LUTO) is, in most cases, caused by anatomical blockage of the bladder outlet. The most common form are posterior urethral valves (PUVs), a male-limited phenotype. Here, we surveyed the genome of 155 LUTO patients to identify disease-causing CNVs. Raw intensity data were collected for CNVs detected in LUTO patients and 4.392 healthy controls using CNVPartition, QuantiSNP and PennCNV. Overlapping CNVs between patients and controls were discarded. Additional filtering implicated CNV frequency in the database of genomic variants, gene content and final visual inspection detecting 37 ultra-rare CNVs. After, prioritization qPCR analysis confirmed 3 microduplications, all detected in PUV patients. One microduplication (5q23.2) occurred de novo in the two remaining microduplications found on chromosome 1p36.21 and 10q23.31. Parental DNA was not available for segregation analysis. All three duplications comprised 11 coding genes: four human specific lncRNA and one microRNA. Three coding genes (FBLIM1, SLC16A12, SNCAIP) and the microRNA MIR107 have previously been shown to be expressed in the developing urinary tract of mouse embryos. We propose that duplications, rare or de novo, contribute to PUV formation, a male-limited phenotype

    Rare Variants in BNC2 Are Implicated in Autosomal-Dominant Congenital Lower Urinary-Tract Obstruction

    No full text
    Congenital lower urinary-tract obstruction (LUTO) is caused by anatomical blockage of the bladder outflow tract or by functional impairment of urinary voiding. About three out of 10,000 pregnancies are affected. Although several monogenic causes of functional obstruction have been defined, it is unknown whether congenital LUTO caused by anatomical blockage has a monogenic cause. Exome sequencing in a family with four affected individuals with anatomical blockage of the urethra identified a rare nonsense variant (c.2557C>T [p.Arg853*]) in BNC2, encoding basonuclin 2, tracking with LUTO over three generations. Resequencing BNC2 in 697 individuals with LUTO revealed three further independent missense variants in three unrelated families. In human and mouse embryogenesis, basonuclin 2 was detected in lower urinary-tract rudiments. In zebrafish embryos, bnc2 was expressed in the pronephric duct and cloaca, analogs of the mammalian lower urinary tract. Experimental knockdown of Bnc2 in zebrafish caused pronephric-outlet obstruction and cloacal dilatation, phenocopying human congenital LUTO. Collectively, these results support the conclusion that variants in BNC2 are strongly implicated in LUTO etiology as a result of anatomical blockage

    Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications

    No full text
    corecore