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Congenital lower urinary tract obstructions (LUTO) are most often caused

by posterior urethral valves (PUV), a male limited anatomical obstruction

of the urethra a�ecting 1 in 4,000 male live births. Little is known about

the genetic background of PUV. Here, we report the largest genome-wide

association study (GWAS) for PUV in 4 cohorts of patients and controls.

The final meta-analysis included 756 patients and 4,823 ethnicity matched

controls and comprised 5,754,208 variants that were genotyped or imputed

and passed quality control in all 4 cohorts. No genome-wide significant locus

was identified, but 33 variants showed suggestive significance (P < 1 × 10−5).

When considering only loci with multiple variants residing within <10 kB of

each other showing suggestive significance and with the same e�ect direction

in all 4 cohorts, 3 loci comprising a total of 9 variants remained. These loci

resided on chromosomes 13, 16, and 20. The present GWAS andmeta-analysis
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is the largest genetic study on PUV performed to date. The fact that no

genome-wide significant locus was identified, can be explained by lack of

power or may indicate that common variants do not play a major role in the

etiology of PUV. Nevertheless, future studies are warranted to replicate and

validate the 3 loci that yielded suggestive associations.

KEYWORDS

genomewide association study, lower urinary tract obstruction, obstructive uropathy,

posterior urethral valves, PCDH9, SALL1, BMP7

Introduction

Congenital lower urinary tract obstruction (LUTO, MIM #

618612) is defined by a decrease in the free passage of urine

from the bladder through the urethra. LUTO can be one of

the most severe diagnoses underlying obstructive uropathy and

may perturb kidney development. Obstructive uropathy is the

second most prevalent cause of end-stage kidney disease in

children (1). LUTO is most often caused by an anatomical

blockage, commonest by posterior urethral valves (PUV) (2),

a male limited phenotype affecting 1 in 4,000 male live births

(3). Severe forms of LUTO can be diagnosed intrauterine,

presenting with megacystis, including “keyhole sign”, as well

as megaureter, oligohydramnios, and often dysplastic kidneys

(2). Milder LUTO forms may manifest postnatally, often with

recurrent urinary tract infections (3). Little is known about

the genetic background of anatomical LUTO or PUV, which

occur sporadically in most cases. Familial forms, segregating

through generations with mixed phenotypes (PUV and stenosis)

as well as affected sib-pairs, have been described, however,

suggesting a potential genetic contribution to the malformation

(4, 5). Furthermore, Frese et al. (6) found higher concordance

rates among monozygotic compared to dizygotic twin pairs

in a classic twin study. Two genetic studies found rare copy

number variants (CNVs) potentially contributing to PUV in

up to 57% of cases (7) and a higher occurrence of rare CNVs

among PUV patients than among controls (8). In addition,

an association with a variant in the angiotensin II receptor

type 2 (AGTR2) was found in one study (9). Variants in

basonuclin 2 (BNC2) as a possible first identified monogenic

cause were described by Kolvenbach et al. (10). Overall, the

genetic background appears heterogeneous with a multifactorial

mode of inheritance likely to underlie a large proportion of

patients. Here, we report the largest study using genome-wide

association methods to identify genetic susceptibility loci for

PUV. The final meta analyses comprised a total of 756 patients

and 4,823 controls.

Materials and methods

Patients and controls and genotyping

Details of the recruitment process for patients and controls

are provided in the Supplement. In short, the GWAS sample

comprised 823 male PUV patients and 5,254 male controls. This

sample consisted of in total 4 cohorts from The Netherlands,

Germany, and Poland. Prior to inclusion, written informed

consent was obtained from all subjects or from their proxies in

case of legal minors. The study was approved by the institutional

medical-ethics committee of the participating centers and was

conducted in accordance with the principles of the Declaration

of Helsinki. DNA was extracted from blood and saliva samples

using standard procedures.

All Dutch samples were genotyped by deCODE Genetics

(Reykjavik, Iceland). The first Dutch cohort comprised 417

patients derived from the Radboudumc AGORA data- and

biobank (11, 12), which were patients born in 1981 or later

who underwent a valve resection before the age of 18 years, and

2,493 controls derived from the Nijmegen Biomedical Study, a

population-based study in which randomly selected inhabitants

of the municipality of Nijmegen received an invitation to

donate blood samples (13). This cohort was genotyped using

the Infinium OmniExpress bead chips (Illumina, San Diego,

CA, USA) and will further be called the Dutch Omni sample.

The second Dutch cohort consisted of 62 AGORA patients and

323 controls collected in AGORA by asking 42 municipalities

to provide a random sample of their inhabitants in the age

range of 0–20 years and inviting these children and adolescents

to provide a saliva sample. This cohort was genotyped using

the Global Screening Array (GSA) from Illumina modified by

deCODE (Illumina, San Diego, CA, USA), and will further be

called the Dutch GSA cohort. The German cohort comprised

109 diagnosed PUV patients sampled through the CaRE for

LUTO (Cause and Risk Evaluation for LUTO) study, mostly

included within in the first year of life right after diagnosis of

PUV and 2,144 German controls derived from a prospective
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population-based cohort study, the Heinz Nixdorf Recall Study

(14). The Polish sample comprised 235 diagnosed PUV patients

recruited in a collaboration between the CaRE for LUTO Study

and the PolTubeReg (Polish registry for tubular kidney disease)

and 294 Polish controls, which were recruited as blood donors

in Lodz, Poland. The German and Polish patient and control

samples were genotyped using the Global Screening Array I

(Illumina, San Diego, CA, USA).

Quality control and imputation

Pre-imputation quality control

Quality control was performed separately for samples from

the different populations and for samples genotyped on different

platforms. Variants were excluded if they had < 98% call rate,

had minor allele frequencies (MAF) < 0.1%, or failed the

Hardy Weinberg Equilibrium (HWE) test (P < 1 × 10−10 for

patients or P < 1 × 10−6 for controls). Samples were excluded

if they had discordant sex information or a call rate < 98%,

or if the kinship coefficient calculated using KING (15) was

>0.0442, indicating a 3rd-degree relationship or higher with

another sample in the cohort. In the identification of individuals

from other ethnicities, PLINK was used to compute principal

components (PC) for study participants and reference samples

of the 1,000 Genomes Project Phase 3 (16) and to visualize sub-

structuring. Participants that clustered with a non-European

population from the 1,000 Genomes project were excluded.

We recomputed the PC in the remaining participants only,

visualized results, and excluded participants with the first or

second PC more than 6 standard deviations from the mean.

Imputation

Imputation was performed for hg19 built, separately for

samples from the different populations and for samples

genotyped on different platforms. Genotypes of the different

samples were phased using SHAPEIT (v2) (17) and imputed

using IMPUTE2 (v2) (18) using 1,000 Genomes Project Phase

3 data as a reference panel (16). After imputation, variants with

an IMPUTE2 information metric (info) score < 0.6 or with a

minor allele count < 20 were excluded.

Association analysis

Association analysis was performed separately for samples

from the different populations and for samples genotyped

on different platforms in PLINK using the logistic regression

framework implemented in the glm function of PLINK 2,1

adjusting for the first 4 principal components. Afterwards,

1 https://www.cog-genomics.org/plink/2.0/

results of SNPs that were genotyped or imputed and passed

quality control in all cohorts were pooled in a meta-analysis

using the effect size estimates and standard errors in the METAL

software, SCHEME STDERR.2 The qqman package in R3 was

used to visualize the results by means of Manhattan and Q-Q

plots. The metafor package in R4 was used to create forest plots

for selected genetic variants of interest.

Results

The post-quality control dataset forwarded to independent

GWAS comprised 402 patients and 2,213 controls for the Dutch

Omni cohort, 58 patients and 314 controls for the Dutch GSA

cohort, 104 patients and 2,070 controls for the German cohort,

and 192 patients and 226 controls for the Polish cohort. The

independent GWAS in the German cohort reached genome-

wide significance for 3 genotyped variants on chromosome

16 (rs117706747, rs117689220, and rs17666927). Imputation

yielded 75 additional variants in LD that also showed genome-

wide significance (ORs ranging between 5.65 and 8.52 with P-

values of 5E−8 to 8E−11). The results in the Polish and theDutch

GSA cohorts showed the same effect direction as in the German

cohort (ORs ranging between 1.28 and 2.14 with P-values of

0.51–0.02 for the Polish cohort and OR between 1.65 and 1.70

with P-values of 0.14–0.09 for the Dutch GSA cohort), whereas

the Dutch Omni cohort presented with opposite or no effect

directions (ORs ranging between 0.66 and 1.18 with all P-values

> 0.11) (Supplementary Table 1).

The final meta-analysis included 756 patients and 4,823 on

ethnicity matched controls and comprised 5,754,208 variants

that were genotyped or imputed and passed quality control in

all 4 cohorts. No relevant inflation was detected (λ = 1.01)

and no genome-wide significant locus was identified (Figure 1).

In total, 33 variants showed suggestive significance (P < 1 ×

10−5, see Supplementary Table 2). However, the effects were in

different directions across cohorts for some of the loci (i.e.,

on chromosome 1, 5, and 18). When considering loci with

multiple variants residing within <10 kB of each other showing

suggestive significance and with the same effect direction in all

4 cohorts only, 3 loci comprising a total of 9 variants remained

(Table 1). These loci reside on chromosome 13 (5 variants), 16 (2

variants), and 20 (2 variants) (see Figures 2A–C for LocusZoom

plots and Figure 2D for Forest plots of leading variants at these

loci). While the locus on chromosome 13 resides in an intronic

region of the gene PCDH9, the loci on chromosome 16 and 20

reside in intergenic regions.

2 https://genome.sph.umich.edu/wiki/METAL

3 https://www.r-project.org/nosvn/pandoc/qqman.html

4 http://www.metafor-project.org/doku.php
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FIGURE 1

Manhattan and quantile-quantile (QQ)-plot of pooled genome-wide association study results for the 5,754,208 variants that were genotyped
and passed quality control in all 4 PUV cohorts for a total number of 756 patients and 4,823 controls. The blue line indicates the threshold for
suggestive genome-wide significance (p-value of 1×10−5).

TABLE 1 Association results with PUV for the variants in loci with multiple variants residing within <10kB of each other showing suggestive

significance (P < 1 × 10−5) and with the same e�ect direction in all 4 cohorts.

CHR BP dbSNPrs# A1 Meta analysis

results

Association results in the 4 cohorts

Dutch GSA Dutch Omni German Polish

Phet OR POR ORa Pa ORa Pa ORa Pa ORa Pa

13 67498549 rs9564361 A 0.97 1.40 9× 10−6 1.58 0.10 1.39 4× 10−4 1.34 0.15 1.41 0.09

13 67498767 rs34844007 C 0.98 1.40 1× 10−5 1.57 0.11 1.39 4× 10−4 1.34 0.15 1.41 0.10

13 67499094 rs34948729 A 0.98 1.40 1× 10−5 1.57 0.11 1.39 4× 10−4 1.34 0.15 1.41 0.10

13 67502603 rs9571693 G 0.98 1.42 6× 10−6 1.53 0.14 1.39 5× 10−4 1.43 0.09 1.50 0.06

13 67503594 rs9571694 A 0.99 1.41 1× 10−5 1.45 0.20 1.39 7× 10−4 1.47 0.07 1.46 0.08

16 51567231 rs10521237 G 0.69 1.51 5× 10−6 1.52 0.14 1.42 2× 10−3 1.52 0.11 1.94 5× 10−3

16 51572611 rs67018781 T 0.83 1.50 6× 10−6 1.53 0.13 1.44 1× 10−3 1.43 0.16 1.82 0.01

20 55990405 rs737092 C 0.49 1.34 5× 10−6 1.60 0.03 1.28 2× 10−3 1.23 0.29 1.60 4× 10−3

20 55991637 rs6014993 G 0.59 1.32 9× 10−6 1.59 0.03 1.27 3× 10−3 1.20 0.34 1.50 8× 10−3

CHR, chromosome; BP, basepair; dbSNPrs#, rs-number as provided by dbSNP; A1, effect allele; Phet , P-value indicating whether statistical significant heterogeneity was present among the

4 cohorts; OR, odds ratio; POR , P-value for odds ratio; ORa , odds ratio adjusted for the first principal component; Pa , P-value for adjusted odds ratio; Dutch GSA, Dutch cohort genotyped

on the Global Screening arrays; Dutch Omni, Dutch cohort genotyped on the Human OmniExpress BeadChips; German, German cohort; Polish, Polish cohort.

Discussion

Here, we report the first GWAS aiming to identify

susceptibility loci in patients with PUV. GWASs in 4 different

cohorts revealed one genome-wide significant locus in the

German cohort on chromosome 16. However, the strong

signal could not be replicated in the other cohorts (see

Supplementary Figures 1–4; Supplementary Table 1). Although

not genome-wide statistically significant, the cohorts genotyped

on Global Screening Arrays (the German, Polish, and Dutch

GSA cohorts) all show the same direction of effect, whereas the

largest cohort in this study, the Dutch Omni cohort, showed the

opposite effect direction. Whether this array-specific correlation

might be caused by a genotyping effect or is due to the different

sample sizes remains speculative. Still, a batch effect driving

the very strong German signal seems unlikely as the German

and Polish patients were processed at the same time, physically

sharing the same genotyping chips. Nevertheless, with one

cohort showing an opposite effect direction, we consider this

locus not to be a PUV-risk locus, albeit its strong positive signal

in the German cohort.

In the meta-analysis of the 4 GWASs, no genome-

wide significant association was identified. We would like to

emphasize that we used very conservative selection criteria only

including variants that passed quality control in all 4 cohorts.

While the usage of multiple cohorts and thus the exclusion of

many variants might be one limitation of this study, it also

guaranteed that only high-quality data were used in the final
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FIGURE 2

LocusZoom plots for the loci on chromosome 13, 16, and 20 with multiple variants residing within <10 kB of each other showing suggestive
significance (P < 1 × 10−5) and with the same e�ect direction in all 4 cohorts. (A) Locus Zoom plot for chr. 13, with LD scoring referring to top
SNP rs9571693. Red line and red quarter indicate rs34844007 in locus zoom plot and in position weight matrix ENCFF525TXJ targeted by POU
class family genes. (B) Locus Zoom plot for chr. 16, with LD scoring referring to top SNP rs10521237. Heat map visualization of Hi-C interactions
among parts of Chr.16q12.1 and parts of 16q12.2 from HMEC human kidney cells, as plotted by TADKB. Blue lines indicate the region plotted in
the locus zoom, showing the identified locus and SALL1 to locate in the same topological associated domain. (C) Locus Zoom plot for chr. 20,
with LD scoring referring to top SNP rs737092. (D) Forest plots for rs9571693, rs10521237, and rs737092, the leading SNPs of the loci on
chromosome 13, 16, and 20, respectively.
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analysis, excluding the possibility that batch effects or signals

driven by a single cohort could lead to false positive findings

in the meta-analysis. Hence, technical issues that can occur by

using just a single genotyping platform could be excluded by

the usage of multiple genotyping platforms. The fact that we did

not observe genome-wide significant results may indicate that

common variants do not play a major role in the etiology of

PUV. Of note, by excluding variants with an allele count < 20 in

the single cohorts, rare variants were excluded because of the low

number of patients and controls, especially in the Dutch GSA (N

= 372 individuals) and the Polish (N = 418 individuals) cohorts.

Our lack of statistically significant results could also be explained

by the relatively small number of patients and the resulting lack

of power, which is a further limitation of this study and caused by

the fact that PUV are a rare disease. With 756 patients and 4,823

controls in a single cohort, we would have had 80% power to

detect loci with an allele frequency of 0.10 and an OR of 1.3. ORs

of this magnitude are generally not observed for multifactorial

disorders, although previous GWASs of similar size for other

rare birth defects such as hypospadias, bladder extrophy and

cleft lip and palate were able to identify loci of genome-wide

significance (19–21).

We identified 3 loci with multiple variants showing

suggestive significance (P < 1 × 10−5) and with the same

effect direction in all 4 cohorts. We will discuss these loci here

in the realization that our results are mainly to be regarded

as suggestive evidence for association and that larger studies

are needed to confirm our findings. In the first locus on

chromosome 13, 5 variants reached P-values below 1 × 10−5.

The other loci, located on chromosomes 16 and 20 (Table 1),

harbored 2 variants each with a P-value below 1× 10−5.

Chromosome 13

The signal on chromosome 13 is located within the first

intron of the PCDH9 gene (Figure 2A). Previous studies showed

associations with body mass index, adult body size, and urinary

potassium excretion (GWAS catalog)5 None of these phenotypes

can be linked directly with PUV. The PCDH9 gene encodes

a member of the protocadherin family, a group of proteins

that mediate cell adhesion in neural tissues in the presence of

calcium (22). PCDH9 may be involved in signaling at neuronal

synaptic junctions. Hence, expression in adult tissues has been

found strongest in the brain, while weak expression was found

in nearly all organs including the urinary tract and prostate6.

In the EMBL-EBI expression atlas (23), experiment # E-MTAB-

6592 shows constant expression of PCDH9 in developing

human urinary bladder and genital tissues through gestational

weeks 7–9. Approximately one third of genes that were found

to be expressed in this experiment, however, showed higher

5 https://www.ebi.ac.uk/gwas/

6 http://www.proteinatlas.org version 20.1.

expression then PCDH9. Still, PCDH9 might be involved in

urinary tract development.

Direct functional importance of the locus is predicted in

the Regulome Database7 (24), which gives regulatory probability

scores ranging from 0 to 1, with 1 being most likely to

be a regulatory variant, generated using a machine learning

approach. Rs34844007, one of the 5 associated variants, has

a probability score of 1 and is therefore very likely to be a

regulatory variant. This variant is located within a transcription

factor binding motif which is targeted by 16 members of

the POU gene family (Figure 2A). Genes of this family have

been shown to be crucially involved in the regulation of

developmental processes in many tissues and organs (25). For

example, Rieger et al. (26) showed in mice that a missense

mutation in Pou3f, one of the genes predicted to target the

transcription factor binding motif, reduces nephron numbers

and impairs development of the thick ascending limb of

the Loop of Henle. Nevertheless, the chromatin state in all

investigated embryonic cell lines in the Regulome DB is

indicative of low or quiescent transcription. Thus, association

of the specific transcription factor binding motif with the

development of the lower urinary tract awaits further evaluation.

Chromosome 16

The 2 variants with suggestive significance located on

chromosome 16 are located within an intergenic region

(Figure 2B). Located 40 kb upstream from our top variants, the

GWAS catalog lists a genome-wide significant association with

the use of diuretics and the use of agents acting on the renin-

angiotensin system (top variant rs62039768, p-value 1 × 10−8,

location chr16:51526850) (27), but no functional annotation

was given in this publication. Both medications are frequently

used in patients with chronic kidney disease, which is often

seen in PUV patients. The closest protein coding gene, located

14kb downstream of our top locus, is HNRNPA1P48. This

gene is a pseudogene to HNRPA1, variants of which have been

implicated in amyothrophic lateral sclerosis, a phenotype not

associated with LUTO (28). The pseudogene is likely to be

expressed in the nucleus (www.proteinatlas.org) and little is

known about its functional implications. The locus is flanked by

a second gene, SALL1, located 387 kb upstream the lead SNP at

this locus. According to existing data of topological associated

domains (TAD) within several human adult and embryonic

cell types (HMEC, NHEK, IMR-90, HUVEC, data source)8, our

top locus locates in one topologically associated domain with

SALL1 (Figure 2B). This is particularly interesting as autosomal

dominantly inherited variants in SALL1 are known to cause

Townes-Brocks syndrome (MIM# 107480), with genitourinary

malformations being one of the syndromes features (29).

7 https://regulomedb.org

8 http://dna.cs.miami.edu/TADKB/)

Frontiers in Pediatrics 06 frontiersin.org

https://doi.org/10.3389/fped.2022.988374
https://www.ebi.ac.uk/gwas/
http://www.proteinatlas.org
http://www.proteinatlas.org
https://regulomedb.org
http://dna.cs.miami.edu/TADKB/
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org


van der Zanden et al. 10.3389/fped.2022.988374

Especially as PUV have been reported in single cases of Townes-

Brocks syndrome (30, 31). Functional studies could shed more

light on this correlation.

Chromosome 20

The signal on chromosome 20 is also located within an

intergenic region (Figure 2C). Both variants reaching suggestive

significance in this locus have been described in several

GWASs and a meta-analysis focusing on erythrocyte traits

and erythropoiesis (32). In these studies, no direct functional

annotation was provided.

Several genes lie in close proximity to this locus, with RBM38

being the closest. In mice this gene is described to be weakly

expressed during development of genitourinary system, but KO-

mice do not show any genitourinary phenotype.9 Interestingly,

BMP7, which locates within 150 kb distance, is described to be

expressed in the developing murine urinary tract. Loss of Bmp7

has been shown to result in arrest of cloacal septation and in

severe abnormalities of the morphogenesis of the genital urethra

and mesenchyme (33). Furthermore, heterozygous deletion of

this region in human, including the here identified risk locus

of suggestive significance, was described in a patient with

anatomical LUTO and in one patient from Decipher with

hydronephrosis (7). As these are only single case descriptions,

larger CNV studies on LUTO patients need to prove that

heterozygous loss of the region can be causal for the phenotype.

Conclusion

The present GWAS and meta-analysis is the largest genetic

study on PUV performed to date. The fact that no genome-wide

significant loci could be identified, may indicate that common

variants do not play a major role in the etiology of PUV or

could be explained by a lack of power. Nevertheless, 3 loci

yielded suggestive associations. Future studies are warranted

to support these loci. Ideally, by confirming them either, in a

replication study of a single very large cohort or by adding more

cohorts to the performed meta-analysis to reach genomewide

significance. Nevertheless, considering PUV being a rare disease

sampling such a cohort will take some time. Nevertheless, in

the meantime, loci could be further explored by performing

sequencing of the complete locus regions in cases and controls

to identify variants in exonic, intronic, or extragenic regions that

are overrepresented in cases compared to controls, suggesting

them to be implicated in the phenotype.
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