214 research outputs found

    Malassezia sympodialis Mala s 1 allergen is a potential KELCH protein that cross reacts with human skin

    Get PDF
    Open Access via the OUP Agreement We thank Giuseppe Ianiri and Joe Heitman for their continuous support and many insightful discussions. Thanks to the Microscopy and Histology Facility at the Institute of Medical Sciences, University of Aberdeen, for sample processing and access to microscopes. Thanks to Dr. David Stead and the Aberdeen Proteomics Facility, University of Aberdeen for the proteomics analysis. Funding This project was funded by a Wellcome Trust Strategic Award for Medical Mycology and Fungal Immunology (097377/Z/11/Z). D.E.C.L., C.M,. and D.M. acknowledge funding from the Wellcome Trust Strategic Award for Medical Mycology and Fungal Immunology 097 377/Z/11/Z. A.S. acknowledges, the Swedish Cancer and Allergy Fund.Peer reviewedPublisher PD

    Epigenetic alterations in skin homing CD4+CLA+ T cells of atopic dermatitis patients

    Get PDF
    T cells expressing the cutaneous lymphocyte antigen (CLA) mediate pathogenic inflammation in atopic dermatitis (AD). The molecular alterations contributing to their dysregulation remain unclear. With the aim to elucidate putative altered pathways in AD we profiled DNA methylation levels and miRNA expression in sorted T cell populations (CD4+, CD4+CD45RA+ naïve, CD4+CLA+, and CD8+) from adult AD patients and healthy controls (HC). Skin homing CD4+CLA+ T cells from AD patients showed significant differences in DNA methylation in 40 genes compared to HC (p < 0.05). Reduced DNA methylation levels in the upstream region of the interleukin-13 gene (IL13) in CD4+CLA+ T cells from AD patients correlated with increased IL13 mRNA expression in these cells. Sixteen miRNAs showed differential expression in CD4+CLA+ T cells from AD patients targeting genes in 202 biological processes (p < 0.05). An integrated network analysis of miRNAs and CpG sites identified two communities of strongly interconnected regulatory elements with strong antagonistic behaviours that recapitulated the differences between AD patients and HC. Functional analysis of the genes linked to these communities revealed their association with key cytokine signaling pathways, MAP kinase signaling and protein ubiquitination. Our findings support that epigenetic mechanisms play a role in the pathogenesis of AD by affecting inflammatory signaling molecules in skin homing CD4+CLA+ T cells and uncover putative molecules participating in AD pathways. © 2020, The Author(s).Peer reviewe

    Pulmonary exposure to single-walled carbon nanotubes does not affect the early immune response against Toxoplasma gondii

    Get PDF
    Background Single-walled carbon nanotubes (SWCNT) trigger pronounced inflammation and fibrosis in the lungs of mice following administration via pharyngeal aspiration or inhalation. Human exposure to SWCNT in an occupational setting may occur in conjunction with infections and this could yield enhanced or suppressed responses to the offending agent. Here, we studied whether the sequential exposure to SWCNT via pharyngeal aspiration and infection of mice with the ubiquitous intracellular parasite Toxoplasma gondii would impact on the immune response of the host against the parasite. Methods C57BL/6 mice were pre-exposed by pharyngeal administration of SWCNT (80 + 80 μg/mouse) for two consecutive days followed by intravenous injection with either 1x103 or 1x104 green fluorescence protein and luciferase-expressing T. gondii tachyzoites. The dissemination of T. gondii was monitored by in vivobioluminescence imaging in real time for 7 days and by plaque formation. The inflammatory response was analysed in bronchoalveolar lavage (BAL) fluid, and by assessment of morphological changes and immune responses in lung and spleen. Results There were no differences in parasite distribution between mice only inoculated with T. gondii or those mice pre-exposed for 2 days to SWCNT before parasite inoculum. Lung and spleen histology and inflammation markers in BAL fluid reflected the effects of SWCNT exposure and T. gondii injection, respectively. We also noted that CD11c positive dendritic cells but not F4/80 positive macrophages retained SWCNT in the lungs 9 days after pharyngeal aspiration. However, co-localization of T. gondii with CD11c or F4/80 positive cells could not be observed in lungs or spleen. Pre-exposure to SWCNT did not affect the splenocyte response to T. gondii. Conclusions Taken together, our data indicate that pre-exposure to SWCNT does not enhance or suppress the early immune response to T. gondii in mice

    Biological and genetic interaction between Tenascin C and Neuropeptide S receptor 1 in allergic diseases

    Get PDF
    Neuropeptide S receptor 1 (NPSR1, GPRA 154, GPRA) has been verified as a susceptibility gene for asthma and related phenotypes. The ligand for NPSR1, Neuropeptide S (NPS), activates signalling through NPSR1 and microarray analysis has identified Tenascin C (TNC) as a target gene of NPS-NPSR1 signalling. TNC has previously been implicated as a risk gene for asthma. We aimed therefore to study the genetic association of TNC in asthma- and allergy-related disorders as well as the biological and genetic interactions between NPSR1 and TNC. Regulation of TNC was investigated using NPS stimulated NPSR1 transfected cells. We genotyped 12 TNC SNPs in the cross-sectional PARSIFAL study (3113 children) and performed single SNP association, haplotype association and TNC and NPSR1 gene-gene interaction analyses. Our experimental results show NPS-dependent upregulation of TNC-mRNA. The genotyping results indicate single SNP and haplotype associations for several SNPs in TNC with the most significant association to rhinoconjunctivitis for a haplotype, with a frequency of 29% in cases (P = 0.0005). In asthma and atopic sensitization significant gene-gene interactions were found between TNC and NPSR1 SNPs, indicating that depending on the NPSR1 genotype, TNC can be associated with either an increased or a decreased risk of disease. We conclude that variations in TNC modifies, not only risk for asthma, but also for rhinoconjunctivitis. Furthermore, we show epistasis based on both a direct suggested regulatory effect and a genetic interaction between NPSR1 and TNC. These results suggest merging of previously independent pathways of importance in the development of asthma- and allergy-related trait

    The Expression of BAFF, APRIL and TWEAK Is Altered in Eczema Skin but Not in the Circulation of Atopic and Seborrheic Eczema Patients

    Get PDF
    The TNF family cytokines BAFF (B-cell activating factor of the TNF family) and APRIL (a proliferation-inducing ligand) are crucial survival factors for B-cell development and activation. B-cell directed treatments have been shown to improve atopic eczema (AE), suggesting the involvement of these cytokines in the pathogenesis of AE. We therefore analyzed the expression of these TNF cytokines in AE, seborrheic eczema (SE) and healthy controls (HC). The serum/plasma concentration of BAFF, APRIL and a close TNF member TWEAK (TNF-like weak inducer of apoptosis) was measured by ELISA. The expression of these cytokines and their receptors in skin was analyzed by quantitative RT-PCR and immunofluorescence. Unlike other inflammatory diseases including autoimmune diseases and asthma, the circulating levels of BAFF, APRIL and TWEAK were not elevated in AE or SE patients compared with HCs and did not correlate with the disease severity or systemic IgE levels in AE patients. Interestingly, we found that the expression of these cytokines and their receptors was altered in positive atopy patch test reactions in AE patients (APT-AE) and in lesional skin of AE and SE patients. The expression of APRIL was decreased and the expression of BAFF was increased in eczema skin of AE and SE, which could contribute to a reduced negative regulatory input on B-cells. This was found to be more pronounced in APT-AE, the initiating acute stage of AE, which may result in dysregulation of over-activated B-cells. Furthermore, the expression levels of TWEAK and its receptor positively correlated to each other in SE lesions, but inversely correlated in AE lesions. These results shed light on potential pathogenic roles of these TNF factors in AE and SE, and pinpoint a potential of tailored treatments towards these factors in AE and SE

    Global Expression Profiling in Atopic Eczema Reveals Reciprocal Expression of Inflammatory and Lipid Genes

    Get PDF
    Atopic eczema (AE) is a common chronic inflammatory skin disorder. In order to dissect the genetic background several linkage and genetic association studies have been performed. Yet very little is known about specific genes involved in this complex skin disease, and the underlying molecular mechanisms are not fully understood.We used human DNA microarrays to identify a molecular picture of the programmed responses of the human genome to AE. The transcriptional program was analyzed in skin biopsy samples from lesional and patch-tested skin from AE patients sensitized to Malassezia sympodialis (M. sympodialis), and corresponding biopsies from healthy individuals. The most notable feature of the global gene-expression pattern observed in AE skin was a reciprocal expression of induced inflammatory genes and repressed lipid metabolism genes. The overall transcriptional response in M. sympodialis patch-tested AE skin was similar to the gene-expression signature identified in lesional AE skin. In the constellation of genes differentially expressed in AE skin compared to healthy control skin, we have identified several potential susceptibility genes that may play a critical role in the pathological condition of AE. Many of these genes, including genes with a role in immune responses, lipid homeostasis, and epidermal differentiation, are localized on chromosomal regions previously linked to AE.Through genome-wide expression profiling, we were able to discover a distinct reciprocal expression pattern of induced inflammatory genes and repressed lipid metabolism genes in skin from AE patients. We found a significant enrichment of differentially expressed genes in AE with cytobands associated to the disease, and furthermore new chromosomal regions were found that could potentially guide future region-specific linkage mapping in AE. The full data set is available at http://microarray-pubs.stanford.edu/eczema

    Nanovesicles from Malassezia sympodialis and Host Exosomes Induce Cytokine Responses – Novel Mechanisms for Host-Microbe Interactions in Atopic Eczema

    Get PDF
    BACKGROUND: Intercellular communication can occur via the release of membrane vesicles. Exosomes are nanovesicles released from the endosomal compartment of cells. Depending on their cell of origin and their cargo they can exert different immunoregulatory functions. Recently, fungi were found to produce extracellular vesicles that can influence host-microbe interactions. The yeast Malassezia sympodialis which belongs to our normal cutaneous microbial flora elicits specific IgE- and T-cell reactivity in approximately 50% of adult patients with atopic eczema (AE). Whether exosomes or other vesicles contribute to the inflammation has not yet been investigated. OBJECTIVE: To investigate if M. sympodialis can release nanovesicles and whether they or endogenous exosomes can activate PBMC from AE patients sensitized to M. sympodialis. METHODS: Extracellular nanovesicles isolated from M. sympodialis, co-cultures of M. sympodialis and dendritic cells, and from plasma of patients with AE and healthy controls (HC) were characterised using flow cytometry, sucrose gradient centrifugation, Western blot and electron microscopy. Their ability to stimulate IL-4 and TNF-alpha responses in autologous CD14, CD34 depleted PBMC was determined using ELISPOT and ELISA, respectively. RESULTS: We show for the first time that M. sympodialis releases extracellular vesicles carrying allergen. These vesicles can induce IL-4 and TNF-α responses with a significantly higher IL-4 production in patients compared to HC. Exosomes from dendritic cell and M. sympodialis co-cultures induced IL-4 and TNF-α responses in autologous CD14, CD34 depleted PBMC of AE patients and HC while plasma exosomes induced TNF-α but not IL-4 in undepleted PBMC. CONCLUSIONS: Extracellular vesicles from M. sympodialis, dendritic cells and plasma can contribute to cytokine responses in CD14, CD34 depleted and undepleted PBMC of AE patients and HC. These novel observations have implications for understanding host-microbe interactions in the pathogenesis of AE

    Phosphatidylserine Targets Single-Walled Carbon Nanotubes to Professional Phagocytes In Vitro and In Vivo

    Get PDF
    Broad applications of single-walled carbon nanotubes (SWCNT) dictate the necessity to better understand their health effects. Poor recognition of non-functionalized SWCNT by phagocytes is prohibitive towards controlling their biological action. We report that SWCNT coating with a phospholipid “eat-me” signal, phosphatidylserine (PS), makes them recognizable in vitro by different phagocytic cells - murine RAW264.7 macrophages, primary monocyte-derived human macrophages, dendritic cells, and rat brain microglia. Macrophage uptake of PS-coated nanotubes was suppressed by the PS-binding protein, Annexin V, and endocytosis inhibitors, and changed the pattern of pro- and anti-inflammatory cytokine secretion. Loading of PS-coated SWCNT with pro-apoptotic cargo (cytochrome c) allowed for the targeted killing of RAW264.7 macrophages. In vivo aspiration of PS-coated SWCNT stimulated their uptake by lung alveolar macrophages in mice. Thus, PS-coating can be utilized for targeted delivery of SWCNT with specified cargoes into professional phagocytes, hence for therapeutic regulation of specific populations of immune-competent cells
    corecore