27 research outputs found

    Iron oxide minerals in dust-source sediments from the Bodélé Depression, Chad: Implications for radiative properties and Fe bioavailability of dust plumes from the Sahara

    Get PDF
    Atmospheric mineral dust can influence climate and biogeochemical cycles. An important component of mineral dust is ferric oxide minerals (hematite and goethite) which have been shown to influence strongly the optical properties of dust plumes and thus affect the radiative forcing of global dust. Here we report on the iron mineralogy of dust-source samples from the Bodélé Depression (Chad, north-central Africa), which is estimated to be Earth’s most prolific dust producer and may be a key contributor to the global radiative budget of the atmosphere as well as to long-range nutrient transport to the Amazon Basin. By using a combination of magnetic property measurements, Mössbauer spectroscopy, reflectance spectroscopy, chemical analysis, and scanning electron microscopy, we document the abundance and relative amounts of goethite, hematite, and magnetite in dust-source samples from the Bodélé Depression. The partition between hematite and goethite is important to know to improve models for the radiative effects of ferric oxide minerals in mineral dust aerosols. The combination of methods shows (1) the dominance of goethite over hematite in the source sediments, (2) the abundance and occurrences of their nanosize components, and (3) the ubiquity of magnetite, albeit in small amounts. Dominant goethite and subordinate hematite together compose about 2% of yellow-reddish dust-source sediments from the Bodélé Depression and contribute strongly to diminution of reflectance in bulk samples. These observations imply that dust plumes from the Bodélé Depression that are derived from goethite-dominated sediments strongly absorb solar radiation. The presence of ubiquitous magnetite (0.002-0.57 wt. %) is also noteworthy for its potentially higher solubility relative to ferric oxide and for its small sizes, including PM<0.1m. For all examined samples, the average iron apportionment is estimated at about 33% in ferric oxide minerals, 1.4 % in magnetite, and 65% in ferric silicates. Structural iron in clay minerals may account for much of the iron in the ferric silicates. We estimate that the mean ferric oxides flux exported from the Bodélé Depression is 0.9 Tg/yr with greater than 50% exported as ferric oxide nanoparticles (<0.1m). The high surface-to-volume ratios of ferric oxide nanoparticles once entrained into dust plumes may facilitate increased atmospheric chemical and physical processing and affect iron solubility and bioavailability to marine and terrestrial ecosystems

    Temporal Variability of Fluvial Sand Composition: An Annual Time Series From Four Rivers in SW Germany

    No full text
    AbstractThe sampling of fluvial sediment is subject to many sources of uncertainty, for example, time and location, and the number of samples collected. It is nevertheless commonly assumed that a sample taken at one time and location provides a somewhat averaged compositional signal. Any spatial or temporal variability of this signal is often neglected. This study investigates how the composition of bed load sand changes over an observation period of 1 year in four river basins with differing bedrock geology in southwestern Germany. Up to 12 bulk sediment samples were taken at the same locations using the same approach and analyzed for their granulometry and geochemistry. The results indicate that (a) different grain sizes yield different compositions due to source rock composition and hydraulic sorting effects, (b) bulk sediment composition changes temporally due to changing grain‐size distribution, and (c) compared to the bulk sample, the composition of narrow grain sizes is temporally more stable but nevertheless has an average variability of 15%. Because heavy mineral‐bound elements such as Zr have the highest variability, we relate a major component of compositional variability to temporally varying heavy mineral concentrations in response to hydrodynamic processes. Mixing modeling demonstrates that the fluvial sand faithfully reflects its catchment geology and that the sediment sources do not change substantially during the observation period, even during a flooding event. We conclude (a) that the causes for compositional variability may be disentangled using chemical and granulometric time series data and (b) that narrow grain sizes yield representative source rock contributions.Plain Language Summary: Sediment transported by rivers is generated by the erosion of the rocks present within the river catchment area. The composition of this sediment is controlled by various processes in the catchment, for example, climate, rock type, weathering, and flow strength. Geoscientists can use modern river sediment to understand how these processes impact sediment composition, and then apply this information to the geologic time. Sampling the river sediment is often the first step in such studies, but few studies consider the sources of uncertainty during sampling, for example, time and location of sampling, and number of collected samples. For this study, we returned to the same river location during the course of 1 year to take bulk sediment samples and analyzed how variable the size of sediment grains and the sediment chemistry are. We discovered that different grain sizes yield different chemical compositions, and this is caused by differences in rock type and hydraulic processes. Because the proportion of different grain sizes in the bulk sediment changes over the year due to water flow conditions, the chemistry of the bulk sediment sample changes over the year. We provide some quantitative estimates for this variability that should be considered in similar studies.Key Points: Bed load sand from 4 rivers was sampled monthly over the course of 1 year to analyze the temporal compositional variability. Composition is grain‐size‐dependent, and narrow grain‐size fractions show less variability than bulk sediment samples. Composition changes during the year, and this is related to changing grain‐size distributions rather than changing sediment sources.https://doi.pangaea.de/10.1594/PANGAEA.95900

    Particle chemical properties in the vertical column based on aircraft observations in the vicinity of Cape Verde Islands

    Get PDF
    During the second Saharan Mineral Dust Experiment (SAMUM-2) field campaign, particles with geometric diameters (d) between â�¼0.1 and 25 �¼m were collected on board of the Deutsches Zentrum f�¼r Luft- und Raumfahrt (German Aerospace Center, DLR) Falcon aircraft. Size, chemical composition and mixing state of aerosols sampled (spatially and vertically resolved) along theWest African coastline and in the Cape Verde Islands region were determined by electron microscopy. A pronounced layer structure of biomass-burning aerosol and desert dust was present for all days during the sampling period from 23 January to 6 February. The aerosol composition of the small particles (d < 0.5 �¼m) was highly variable and in cases of biomass burning strongly dominated by soot with up to 90% relative number abundance. Internal mixtures of soot particles with mineral dust were not detected. Soot was only observed to mix with secondary sulphate. The coarse particles (d > 0.5 �¼m) were dominated by silicates. In the Cape Verde Islands region mineral dust is well mixed. The determination of source regions by elemental or mineralogical composition was generally not possible, except for air masses which were transported over the Gulf of Guinea. The real part of the refractive index showed little variation. In contrast, the imaginary part strongly depended on the abundance of soot (biomass-burning aerosol) and haematite (mineral dust)

    Temporal Variability of Fluvial Sand Composition: An Annual Time Series From Four Rivers in SW Germany

    Get PDF
    The sampling of fluvial sediment is subject to many sources of uncertainty, for example, time and location, and the number of samples collected. It is nevertheless commonly assumed that a sample taken at one time and location provides a somewhat averaged compositional signal. Any spatial or temporal variability of this signal is often neglected. This study investigates how the composition of bed load sand changes over an observation period of 1 year in four river basins with differing bedrock geology in southwestern Germany. Up to 12 bulk sediment samples were taken at the same locations using the same approach and analyzed for their granulometry and geochemistry. The results indicate that (a) different grain sizes yield different compositions due to source rock composition and hydraulic sorting effects, (b) bulk sediment composition changes temporally due to changing grain‐size distribution, and (c) compared to the bulk sample, the composition of narrow grain sizes is temporally more stable but nevertheless has an average variability of 15%. Because heavy mineral‐bound elements such as Zr have the highest variability, we relate a major component of compositional variability to temporally varying heavy mineral concentrations in response to hydrodynamic processes. Mixing modeling demonstrates that the fluvial sand faithfully reflects its catchment geology and that the sediment sources do not change substantially during the observation period, even during a flooding event. We conclude (a) that the causes for compositional variability may be disentangled using chemical and granulometric time series data and (b) that narrow grain sizes yield representative source rock contributions
    corecore