381 research outputs found

    Applying rotorcraft modelling technology to renewable energy research

    Get PDF
    The perceived need to reduce mankind's impact on the global climate motivates towards a future society in which a significant proportion of its energy needs will be extracted from the winds and the tides of the planet. This paper shows several examples of the application of Brown's Vorticity Transport Model, originally developed to perform simulations of helicopter aeromechanics and wake dynamics, to the analysis of the performance of renewable energy devices and their possible impact on the environment. Prediction of the loading on wind turbines introduces significant additional challenges to such a model, including the need to account fully for the effects of radial flow on blade stall. The wake-mediated aerodynamic interactions that occur within a wind farm can reduce its power output significantly, but this problem is very similar to that where the aerodynamic unsteadiness of the coupled wake of the main and tail rotors of a helicopter can result in significantly increased pilot workload. The helicopter-related problem of brownout, encountered during operations in desert conditions, has its analogue in the entrainment of sediment into the wakes of tidal turbines. In both cases it may be possible to ameliorate the influence of the rotor on its environment by careful and well-informed design. Finally, calculations of the distortion and dispersal of the exhaust plumes of a helicopter by the wake of its rotor allow insight into how wind turbines might interfere with the dispersal of pollutants from nearby industrial sites. These examples show how cross-disciplinary information transfer between the rotorcraft field and the renewable energy community is helping to develop the technologies that will be required by our future society, as well as helping to understand the environmental issues that might need to be faced as these technologies become more prevalent

    Effect of dynamic stall on the aerodynamics of vertical-axis wind turbines

    Get PDF
    Accurate simulations of the aerodynamic performance of vertical-axis wind turbines pose a significant challenge for computational fluid dynamics methods. The aerodynamic interaction between the blades of the rotor and the wake that is produced by the blades requires a high-fidelity representation of the convection of vorticity within the wake. In addition, the cyclic motion of the blades induces large variations in the angle of attack on the blades that can manifest as dynamic stall. The present paper describes the application of a numerical model that is based on the vorticity transport formulation of the Navier–Stokes equations, to the prediction of the aerodynamics of a verticalaxis wind turbine that consists of three curved rotor blades that are twisted helically around the rotational axis of the rotor. The predicted variation of the power coefficient with tip speed ratio compares very favorably with experimental measurements. It is demonstrated that helical blade twist reduces the oscillation of the power coefficient that is an inherent feature of turbines with non-twisted blade configurations

    Stress-induced TRAILR2 expression overcomes TRAIL resistance in cancer cell spheroids

    Get PDF
    The influence of 3D microenvironments on apoptosis susceptibility remains poorly understood. Here, we studied the susceptibility of cancer cell spheroids, grown to the size of micrometastases, to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Interestingly, pronounced, spatially coordinated response heterogeneities manifest within spheroidal microenvironments: In spheroids grown from genetically identical cells, TRAIL-resistant subpopulations enclose, and protect TRAIL-hypersensitive cells, thereby increasing overall treatment resistance. TRAIL-resistant layers form at the interface of proliferating and quiescent cells and lack both TRAILR1 and TRAILR2 protein expression. In contrast, oxygen, and nutrient deprivation promote high amounts of TRAILR2 expression in TRAIL-hypersensitive cells in inner spheroid layers. COX-II inhibitor celecoxib further enhanced TRAILR2 expression in spheroids, likely resulting from increased ER stress, and thereby re-sensitized TRAIL-resistant cell layers to treatment. Our analyses explain how TRAIL response heterogeneities manifest within well-defined multicellular environments, and how spatial barriers of TRAIL resistance can be minimized and eliminated

    HIV Risk Behavior Self-Report Reliability at Different Recall Periods

    Get PDF
    Few studies have investigated the optimal length of recall period for self-report of sex and drug-use behaviors. This meta-analysis of 28 studies examined the test-retest reliability of three commonly used recall periods: 1, 3, and 6 months. All three recall periods demonstrated acceptable test-retest reliability, with the exception of recall of needle sharing behaviors and 6-months recall of some sex behaviors. For most sex behaviors, a recall period of 3 months was found to produce the most reliable data; however, 6 months was best for recalling number of sex partners. Overall, shorter periods were found to be more reliable for recall of drug-use behaviors, though the most reliable length of recall period varied for different types of drugs. Implications of the findings and future directions for research are discussed

    Expression of TLR2, TLR4, and TLR9 in dermatomyositis and polymyositis

    Get PDF
    The aim of this study was to investigate the expressions of Toll-like receptor (TLR) 2, TLR4, TLR9, and their correlations with the expression of cytokines that are associated with activation of CD4+ T cells and inflammation including interferon γ (IFNγ), interleukin 4 (IL4), interleukin 17 (IL17), and tumor necrosis factor α (TNFα) in muscle tissues of patients with dermatomyositis (DM) and polymyositis (PM). The expressions of TLR2, TLR4, TLR9, IFNγ, IL4, IL17, and TNFα were measured by real-time reverse transcription–polymerase chain reaction in muscle tissues from 14 patients with DM and PM (nine patients with DM, five patients with PM) and three controls. The expressions of TLR2, TLR4, and TLR9 were also localized with immunohistochemistry. The expression levels of TLR2, TLR4, TLR9, IFNγ, IL4, IL17, and TNFα were significantly high in patients with DM and PM compared with those in the controls, and the expression levels of TLR4 and TLR9 had significant positive correlations with the expressions of IFNγ, IL4, IL17, and TNFα. Immunohistochemistry showed that TLR2, TLR4, and TLR9 were expressed by infiltrating cells of perimysium in DM, whereas they were expressed by infiltrating cells of endomysium in PM. These results suggest that the involvement of TLR4 and TLR9 in immunopathogenesis of DM and PM might be connected with activation of CD4+ T cells

    Social learning in LEADER: Exogenous, endogenous and hybrid evaluation in rural development

    Get PDF
    This paper considers the relationship between the centralised exogenous, institutions and the embedded, endogenous institutions of rural governance in Europe through an examination the evaluation procedures of the European LEADER programme. LEADER is presented in the literature as progressive in terms of innovation and stakeholder engagement. Yet while the planning and management of LEADER embraces heterogeneity and participation, programmatic evaluation is centralised and held at arms length from delivery organisations. The paper reviews previous efforts to improve evaluation in LEADER and considers alternative strategies for evaluation, contrasting LEADER practice with participatory evaluation methodologies in the wider international context. Can evaluation in itself be valuable as a mode of social learning and hence a driver for endogenous development in rural communities in Europe? The paper concludes by examining the challenges in producing a hybrid form of evaluation which accommodates endogenous and exogenous values

    Oncogenic Stress Induced by Acute Hyper-Activation of Bcr-Abl Leads to Cell Death upon Induction of Excessive Aerobic Glycolysis

    Get PDF
    In response to deregulated oncogene activation, mammalian cells activate disposal programs such as programmed cell death. To investigate the mechanisms behind this oncogenic stress response we used Bcr-Abl over-expressing cells cultivated in presence of imatinib. Imatinib deprivation led to rapid induction of Bcr-Abl activity and over-stimulation of PI3K/Akt-, Ras/MAPK-, and JAK/STAT pathways. This resulted in a delayed necrosis-like cell death starting not before 48 hours after imatinib withdrawal. Cell death was preceded by enhanced glycolysis, glutaminolysis, and amino acid metabolism leading to elevated ATP and protein levels. This enhanced metabolism could be linked to induction of cell death as inhibition of glycolysis or glutaminolysis was sufficient to sustain cell viability. Therefore, these data provide first evidence that metabolic changes induced by Bcr-Abl hyper-activation are important mediators of oncogenic stress-induced cell death
    corecore