23 research outputs found

    Watching Space Charge Build Up in an Organic Solar Cell

    Get PDF
    Space charge effects can significantly degrade charge collection in organic photovoltaics (OPVs), especially in thick-film devices. The two main causes of space charge are doping and imbalanced transport. Although these are completely different phenomena, they lead to the same voltage dependence of the photocurrent, making them difficult to distinguish. In this work, a method is introduced how the build-up of space charge due to imbalanced transport can be monitored in a real operating organic solar cell. The method is based on the reconstruction of quantum efficiency spectra and requires only optical input parameters that are straightforward to measure. This makes it suitable for the screening of new OPV materials. Furthermore, numerical and analytical means are derived to predict the impact of imbalanced transport on the charge collection. It is shown that when charge recombination is sufficiently reduced, balanced transport is not a necessary condition for efficient thick-film OPVs.Comment: replaced by final version; license changed to CC BY 4.

    Sequential doping of solid chunks of a conjugated polymer for body-heat-powered thermoelectric modules

    Get PDF
    Sequential doping of 1 mm3 sized cubes of regio-regular poly(3-hexylthiophene) (P3HT) with 2,3,5,6-tetrafluoro-tetracyanoquinodimethane is found to result in a doping gradient. The dopant ingresses into the solid material and after two weeks of sequential doping yields a 250 μm thick doped surface layer, while the interior of the cubes remains undoped. The doping gradient is mapped with energy dispersive x-ray spectroscopy (EDX), which is used to estimate a diffusion coefficient of 1 7 10-10 cm2 s-1 at room temperature. The cubes, prepared by pressing at 150 \ub0C, feature alignment of polymer chains along the flow direction, which yields an electrical conductivity of 2.2 S cm-1 in the same direction. A 4-leg thermoelectric module was fabricated with slabs of pressed and doped P3HT, which generated a power of 0.22 μW for a temperature gradient of 10.2 \ub0C generated by body heat

    Delocalization Enhances Conductivity at High Doping Concentrations

    Get PDF
    Many applications of organic semiconductors require high electrical conductivities and hence high doping levels. Therefore, it is indispensable for effective material design to have an accurate understanding of the underlying transport mechanisms in this regime. In this study, own and literature experimental data that reveal a power-law relation between the conductivity and charge density of strongly p-doped conjugated polymers are combined. This behavior cannot consistently be described with conventional models for charge transport in energetically disordered materials. Here, it is shown that the observations can be explained in terms of a variable range hopping model with an energy-dependent localization length. A tight-binding model is used to quantitatively estimate of the energy-dependent localization length, which is used in an analytical variable range hopping model. In the limit of low charge densities, the model reproduces the well-known Mott variable range hopping behavior, while for high charge densities, the experimentally observed superlinear increase in conductivity with charge density is reproduced. The latter behavior occurs when the Fermi level reaches partially delocalized states. This insight can be anticipated to lead to new strategies to increase the conductivity of organic semiconductors

    Schottky Solar Cells with CuInSâ‚‚ Nanocrystals as Absorber Material

    Get PDF
    Colloidal semiconductor nanocrystals with tunable optical properties are promising materials for light harvesting in solar cells. So far, in particular cadmiumand lead chalcogenide nanocrystals were intensively studied in this respect, and the device performance has made rapid progress in recent years. In contrast, less research efforts were undertaken to develop solar cells based on Cd- and Pb-free nanoparticles as absorbermaterial. In the present work, we report on Schottky solar cells with the absorber layermade of colloidal copper indiumdisulfide nanocrystals. Absorber films with up to ∼ 500 nm thickness were realized by a solution-based layer-by-layer deposition technique. The device performance was systematically studied dependent on the absorber layer thickness. Decreasing photocurrent densities with increasing thickness revealed charge transport to be a limiting factor for the device performance

    How to Reduce Charge Recombination in Organic Solar Cells: There Are Still Lessons to Learn from P3HT:PCBM

    Get PDF
    Suppressing charge recombination is key for organic solar cells to become commercial reality. However, there is still no conclusive picture of how recombination losses are influenced by the complex nanoscale morphology. Here, new insight is provided by revisiting the P3HT:PCBM blend, which is still one of the best performers regarding reduced recombination. By changing small details in the annealing procedure, two model morphologies were prepared that vary in phase separation, molecular order and phase purity, as revealed by electron tomography and optical spectroscopy. Both systems behave very similarly with respect to charge generation and transport, but differ significantly in bimolecular recombination. Only the system containing P3HT aggregates of high crystalline quality and purity is found to achieve exceptionally low recombination rates. The high-quality aggregates support charge delocalization, which assists the re-dissociation of interfacial charge-transfer states formed upon the encounter of free carriers. For devices with the optimized morphology, an exceptional long hole diffusion length is found, which allows them to work as Shockley-type solar cells even in thick junctions of 300 nm. In contrast, the encounter rate and the size of the phase-separated domains appears to be less important.Comment: final version, journal reference and DOI adde

    Non-Wiedemann-Franz behavior of the thermal conductivity of organic semiconductors

    No full text
    Organic semiconductors have attracted increasing interest as thermoelectric converters in recent years due to their intrinsically low thermal conductivity compared to inorganic materials. This boom has led to encouraging practical results in which the thermal conductivity has predominantly been treated as an empirical number. However, in an optimized thermoelectric material, the electronic component can dominate the thermal conductivity, in which case the figure of merit ZT becomes a function of thermopower and Lorentz factor only. Hence the design of effective organic thermoelectric materials requires understanding the Lorenz number. Here, analytical modeling and kinetic Monte Carlo simulations are combined to study the effect of energetic disorder and length scales on the correlation of electrical and thermal conductivity in organic semiconductor thermoelectrics. We show that a Lorenz factor up to a factor similar to 5 below the Sommerfeld value can be obtained for weakly disordered systems, in contrast with what has been observed for materials with band transport. Although the electronic contribution dominates the thermal conductivity within the application-relevant parameter space, reaching ZT amp;gt; 1 would require minimization of both the energetic disorder and also the lattice thermal conductivity to values below kappa(1at) amp;lt; 0.2 W/mK.Funding Agencies|European Unions Horizon 2020 research and innovation program under the Marie Sklodowska-Curie GrantEuropean Union (EU) [799477]</p

    Comprehensive Model for the Thermoelectric Properties of Two-Dimensional Carbon Nanotube Networks

    No full text
    Networks of semiconducting single-walled carbon nanotubes (SWCNTs) are interesting thermoelectric materials due to the interplay between CNT and network properties. Here, we present a unified model to explain charge and energy transport in SWCNT networks. We use the steady-state master equation for the random resistor network containing both intra- and intertube resistances, as defined through their one-dimensional density of states that are modulated by static Gaussian disorder. The tube-resistance dependence on the carrier density and disorder is described through the Landauer formalism. Electrical and thermoelectric properties of the network are obtained by solving Kirchhoff’s laws through a modified nodal analysis, where we use the Boltzmann-transport formalism to obtain the conductivity, Seebeck coefficient, and electronic contribution to the thermal conductivity. The model provides a consistent description of a wide range of previously published experimental data for temperature and charge-carrierdensity-dependent conductivities and Seebeck coefficients, with energetic disorder being the main factor to explain the experimentally observed mobility upswing with carrier concentration. Moreover, we show that, for lower disorder energies, the Lorentz factor obtained from the simulation is in accordance with the Wiedemann-Franz law for degenerate-band semiconductors. At higher disorder, deviations from simple band behavior are found. Suppressed disorder energy and lattice thermal conductivity can be the key to higher thermoelectric figures of merit, zT, in SWCNT networks, possibly approaching or even exceeding zT=1. The general understanding of transport phenomena will help the selection of chirality, composition, and charge-carrier density of SWCNT networks to improve their efficiency of thermoelectric energy conversion
    corecore