1,160 research outputs found

    Potential und Forschungsbedarf additiv gefertigter Druckgeräte

    Get PDF
    Metallverarbeitende additive Fertigungsverfahren, wie die der Prozesskategorie „laserbasiertes Pulverbettschmelzen“, bieten durch die schichtweise Herstellung von Bauteilen viele Formgebungsfreiheiten. Diese bieten auch für die chemisch-verfahrenstechnische Prozessindustrie eine Vielzahl an Nutzenversprechen. Für das rechtssichere Inverkehrbringen bedarf es gesicherter Methoden und entsprechende technische Normen.Metal-working additive manufacturing (AM) processes, such as those of the process category "Laser-based Powder Bed Fusion" (LB-PBF-M), offer a wide range of design freedom due to the layer-by-layer production of components. It offers alarge number of value-added benefits for the chemical process industry. For legally compliant placing on the market, reliable methods and corresponding technical standards are required

    Comparative quantitative LC–MS/MS analysis of 13 amylase/trypsin inhibitors in ancient and modern Triticum species

    Get PDF
    Amylase/trypsin inhibitors (ATIs) are major wheat allergens and they are also implicated in causing non-celiac gluten sensitivity and worsening other inflammatory conditions. With only few studies on ATI contents in different Triticum species available so far, we developed a targeted liquid chromatography-tandem mass spectrometry (LC–MS/MS) method based on stable isotope dilution assays to quantitate the 13 most important ATIs in a well-defined sample set of eight cultivars of common wheat and durum wheat (modern species), as well as spelt, emmer and einkorn (ancient species) grown at three locations in Germany, respectively. Only few ATIs with low contents were detected in einkorn. In contrast, spelt had the highest total ATI contents. Emmer and common wheat had similar total ATI contents, with durum wheat having lower contents than common wheat. Due to the lack of correlation, it was not possible to estimate ATI contents based on crude protein contents. The wheat species had a higher influence on ATI contents than the growing location and the heritability of this trait was high. Despite comparatively low intra-species variability, some cultivars were identified that may be promising candidates for breeding for naturally low ATI contents

    Temperature dependent photoluminescence of organic semiconductors with varying backbone conformation

    Get PDF
    We present photoluminescence studies as a function of temperature from a series of conjugated polymers and a conjugated molecule with distinctly different backbone conformations. The organic materials investigated here are: planar methylated ladder type poly para-phenylene, semi-planar polyfluorene, and non-planar para hexaphenyl. In the longer-chain polymers the photoluminescence transition energies blue shift with increasing temperatures. The conjugated molecules, on the other hand, red shift their transition energies with increasing temperatures. Empirical models that explain the temperature dependence of the band gap energies in inorganic semiconductors can be extended to explain the temperature dependence of the transition energies in conjugated molecules.Comment: 8 pages, 9 figure

    No correlation between amylase/trypsin-inhibitor content and amylase inhibitory activity in hexaploid and tetraploid wheat species

    Get PDF
    Wheat amylase/trypsin-inhibitors (ATI) are known triggers for wheat-related disorders. The aims of our study were to determine (1) the inhibitory activity against different α-amylases, (2) the content of albumins and globulins (ALGL) and total ATI and (3) to correlate these parameters in wholegrain flour of hexaploid, tetraploid and diploid wheat species. The amount of ATI within the ALGL fraction varied from 0.8% in einkorn to 20% in spelt. ATI contents measured with reversed-phase high-performance liquid chromatography (RP-HPLC) revealed similar contents (1.2–4.2 mg/g) compared to the results determined by LC-MS/MS (0.2–5.2 mg/g) for all wheat species except einkorn. No correlation was found between ALGL content and inhibitory activity. In general, hexaploid cultivars of spelt and common wheat had the highest inhibitory activities, showing values between 897 and 3564 AIU/g against human salivary α-amylase. Tetraploid wheat species durum and emmer had lower activities (170–1461 AIU/g), although a few emmer cultivars showed similar activities at one location. In einkorn, no inhibitory activity was found. No correlation was observed between the ATI content and the inhibitory activity against the used α-amylases, highlighting that it is very important to look at the parameters separately

    Involvement of Plasmodium falciparum protein kinase CK2 in the chromatin assembly pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein kinase CK2 is a pleiotropic serine/threonine protein kinase with hundreds of reported substrates, and plays an important role in a number of cellular processes. The cellular functions of <it>Plasmodium falciparum </it>CK2 (PfCK2) are unknown. The parasite's genome encodes one catalytic subunit, PfCK2α, which we have previously shown to be essential for completion of the asexual erythrocytic cycle, and two putative regulatory subunits, PfCK2β1 and PfCK2β2.</p> <p>Results</p> <p>We now show that the genes encoding both regulatory PfCK2 subunits (PfCK2β1 and PfCK2β2) cannot be disrupted. Using immunofluorescence and electron microscopy, we examined the intra-erythrocytic stages of transgenic parasite lines expressing hemagglutinin (HA)-tagged catalytic and regulatory subunits (HA-CK2α, HA-PfCK2β1 or HA-PfCK2β2), and localized all three subunits to both cytoplasmic and nuclear compartments of the parasite. The same transgenic parasite lines were used to purify PfCK2β1- and PfCK2β2-containing complexes, which were analyzed by mass spectrometry. The recovered proteins were unevenly distributed between various pathways, with a large proportion of components of the chromatin assembly pathway being present in both PfCK2β1 and PfCK2β2 precipitates, implicating PfCK2 in chromatin dynamics. We also found that chromatin-related substrates such as nucleosome assembly proteins (Naps), histones, and two members of the Alba family are phosphorylated by PfCK2α <it>in vitro</it>.</p> <p>Conclusions</p> <p>Our reverse-genetics data show that each of the two regulatory PfCK2 subunits is required for completion of the asexual erythrocytic cycle. Our interactome study points to an implication of PfCK2 in many cellular pathways, with chromatin dynamics being identified as a major process regulated by PfCK2. This study paves the way for a kinome-wide interactomics-based approach to elucidate protein kinase function in malaria parasites.</p

    TUCreate - eine Werkstatt für Studenten am IMW

    Get PDF
    Die Studierendenwerkstatt TUCreate ermöglicht allen Studenten der TU Clausthal das Fertigen von Bauteilen. Neben der praktischen Erfahrung wird im Vorfeld auch das notwendige Hintergrundwissen erlernt und somit das Wissen aus den Vorlesungen in die praktische Anwendung überführt.The TUCreate workspace could be used by all students in Clausthal to manufacture parts. Beside the practical skills, also the theoretical backgrounds are learned. Therefore students have the chance to transfer their knowledge from several lectures into practical work and experience

    Plasmodium falciparum FIKK Kinase Members Target Distinct Components of the Erythrocyte Membrane

    Get PDF
    BACKGROUND: Modulation of infected host cells by intracellular pathogens is a prerequisite for successful establishment of infection. In the human malaria parasite Plasmodium falciparum, potential candidates for erythrocyte remodelling include the apicomplexan-specific FIKK kinase family (20 members), several of which have been demonstrated to be transported into the erythrocyte cytoplasm via Maurer's clefts. METHODOLOGY: In the current work, we have knocked out two members of this gene family (Pf fikk7.1 and Pf fikk12), whose products are localized at the inner face of the erythrocyte membrane. Both mutant parasite lines were viable and erythrocytes infected with these parasites showed no detectable alteration in their ability to adhere in vitro to endothelial receptors such as chondroitin sulfate A and CD36. However, we observed sizeable decreases in the rigidity of infected erythrocytes in both knockout lines. Mutant parasites were further analyzed using a phospho-proteomic approach, which revealed distinct phosphorylation profiles in ghost preparations of infected erythrocytes. Knockout parasites showed a significant reduction in the level of phosphorylation of a protein of approximately 80 kDa for FIKK12-KO in trophozoite stage and a large protein of about 300 kDa for FIKK7.1-KO in schizont stage. CONCLUSIONS: Our results suggest that FIKK members phosphorylate different membrane skeleton proteins of the infected erythrocyte in a stage-specific manner, inducing alterations in the mechanical properties of the parasite-infected red blood cell. This suggests that these host cell modifications may contribute to the parasites' survival in the circulation of the human host

    Simulating local deformations in the human cortex due to blood flow-induced changes in mechanical tissue properties: Impact on functional magnetic resonance imaging

    Get PDF
    Investigating human brain tissue is challenging due to the complexity and the manifold interactions between structures across different scales. Increasing evidence suggests that brain function and microstructural features including biomechanical features are related. More importantly, the relationship between tissue mechanics and its influence on brain imaging results remains poorly understood. As an important example, the study of the brain tissue response to blood flow could have important theoretical and experimental consequences for functional magnetic resonance imaging (fMRI) at high spatial resolutions. Computational simulations, using realistic mechanical models can predict and characterize the brain tissue behavior and give us insights into the consequent potential biases or limitations of in vivo, high-resolution fMRI. In this manuscript, we used a two dimensional biomechanical simulation of an exemplary human gyrus to investigate the relationship between mechanical tissue properties and the respective changes induced by focal blood flow changes. The model is based on the changes in the brain’s stiffness and volume due to the vasodilation evoked by neural activity. Modeling an exemplary gyrus from a brain atlas we assessed the influence of different potential mechanisms: (i) a local increase in tissue stiffness (at the level of a single anatomical layer), (ii) an increase in local volume, and (iii) a combination of both effects. Our simulation results showed considerable tissue displacement because of these temporary changes in mechanical properties. We found that the local volume increase causes more deformation and consequently higher displacement of the gyrus. These displacements introduced considerable artifacts in our simulated fMRI measurements. Our results underline the necessity to consider and characterize the tissue displacement which could be responsible for fMRI artifacts

    Thermally induced gluten modification observed with rheology and spectroscopies

    Get PDF
    The protein vital gluten is mainly used for food while interest for non-food applications, like biodegradable materials, increases. In general, the structure and functionality of proteins is highly dependent on thermal treatments during production or modification. This study presents conformational changes and corresponding rheological effects of vital wheat gluten depending on temperature. Dry samples analyzed by X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR) and thermalgravimetric analysis coupled with mass spectrometry (TGA-MS) show surface compositions and conformational changes from 25 to 250 °C. Above 170 °C, XPS reveals a decreased N content at the surface while FTIR band characteristics for β-sheets prove structural changes. At 250 °C, protein denaturation accompanied by a significant mass loss due to dehydration and decarbonylation reactions is observed. Oscillatory measurements of optimally hydrated vital gluten describing network properties of the material show two structural changes along a temperature ramp from 25 to 90 °C: at 56–64 °C, the temperature necessary to trigger structural changes increases with the ratio of gliadin to total protein mass, determined by reversed-phase high performance liquid chromatography (RP-HPLC). At a temperature of 79–81 °C, complete protein denaturation occurs. FTIR confirms the denaturation process by showing band shifts with both temperature steps
    corecore