173 research outputs found

    Micropropagation and conservation of selected endangered anticancer medicinal plants from the Western Ghats of India

    Get PDF
    Globally, cancer is a constant battle which severely affects the human population. The major limitations of the anticancer drugs are the deleterious side effects on the quality of life. Plants play a vital role in curing many diseases with minimal or no side effects. Phytocompounds derived from various medicinal plants serve as the best source of drugs to treat cancer. The global demand for phytomedicines is mostly reached by the medicinal herbs from the tropical nations of the world even though many plant species are threatened with extinction. India is one of the mega diverse countries of the world due to its ecological habitats, latitudinal variation, and diverse climatic range. Western Ghats of India is one of the most important depositories of endemic herbs. It is found along the stretch of south western part of India and constitutes rain forest with more than 4000 diverse medicinal plant species. In recent times, many of these therapeutically valued herbs have become endangered and are being included under the red-listed plant category in this region. Due to a sharp rise in the demand for plant-based products, this rich collection is diminishing at an alarming rate that eventually triggered dangerous to biodiversity. Thus, conservation of the endangered medicinal plants has become a matter of importance. The conservation by using only in situ approaches may not be sufficient enough to safeguard such a huge bio-resource of endangered medicinal plants. Hence, the use of biotechnological methods would be vital to complement the ex vitro protection programs and help to reestablish endangered plant species. In this backdrop, the key tools of biotechnology that could assist plant conservation were developed in terms of in vitro regeneration, seed banking, DNA storage, pollen storage, germplasm storage, gene bank (field gene banking), tissue bank, and cryopreservation. In this chapter, an attempt has been made to critically review major endangered medicinal plants that possess anticancer compounds and their conservation aspects by integrating various biotechnological tool

    Spin alignment of leading K(892)0K^{*}(892)^{0} mesons in hadronic Z0Z^0 decays

    Get PDF
    Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.Helicity density matrix elements for inclusive K ∗ (892) 0 mesons from hadronic Z 0 decays have been measured over the full range of K ∗ 0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x p values above 0.3, with the matrix element ϱ 00 rising to 0.66 ± 0.11 for x p > 0.7. The values of the real part of the off-diagonal element ϱ 1 - 1 are negative at large x p , with a weighted average value of −0.09 ± 0.03 for x p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the q q system from the Z 0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x p range. The K ∗ 0 fragmentation function has also been measured and the total rate determined to be 0.74 ± 0.02 ± 0.02 K ∗ (892) 0 mesons per hadronic Z 0 decay

    EuFe2_2As2_2 under high pressure: an antiferromagnetic bulk superconductor

    Get PDF
    We report the ac magnetic susceptibility χac\chi_{ac} and resistivity ρ\rho measurements of EuFe2_2As2_2 under high pressure PP. By observing nearly 100% superconducting shielding and zero resistivity at PP = 28 kbar, we establish that PP-induced superconductivity occurs at TcT_c \sim~30 K in EuFe2_2As2_2. ρ\rho shows an anomalous nearly linear temperature dependence from room temperature down to TcT_c at the same PP. χac\chi_{ac} indicates that an antiferromagnetic order of Eu2+^{2+} moments with TNT_N \sim~20 K persists in the superconducting phase. The temperature dependence of the upper critical field is also determined.Comment: To appear in J. Phys. Soc. Jpn., Vol. 78 No.

    The Physics of the B Factories

    Get PDF

    Clinical and histologic evaluation of human gingival recession treated with a subepithelial connective tissue graft and enamel matrix derivative (Emdogain): a case report

    No full text
    A mandibular canine with significant gingival recession was selected for a pilot study to measure the attachment modalities resulting from mucogingival surgery. The tooth had 6 mm of recession as measured from the cementoenamel junction to the gingival margin, minimal pocketing, and no keratinized gingiva. The treatment regimen consisted of a subepithelial connective tissue graft (SCTG) plus Emdogain applied to the root surface. The tooth was extracted en bloc 6 months after surgery and processed histologically in a buccolingual plane. The tooth demonstrated a 2-mm gain of attachment and a 3-mm gain in keratinized tissue. The histologic study evidenced the migration of the junctional epithelium 1.2 mm apical to the sulcus. New cementum, evidence of newly formed woven bone, and connective tissue fibers anchored in the new cementum were evident

    Clinical, radiographic, and histologic evaluation of human periodontal defects treated with Bio-Oss and Bio-Gide

    No full text
    This study evaluated the clinical, radiographic, and histologic response to Bio-Oss porous bone mineral when used alone or in combination with Bio-Gide bilayer collagen membrane in human periodontal defects. Four intrabony periodontal defects were treated: two received Bio-Oss alone and two were treated with a combination of Bio-Oss and Bio-Gide. Radiographs, clinical probing depths and attachment levels were obtained preoperatively and 6 to 9 months postoperative, and teeth and surrounding tissues were biopsied. Both treatments significantly improved clinical probing depths and attachment levels, and the radiographic appearance suggested osseous fill. Histologic evaluation revealed that both treatments produced new cementum with inserting collagen fibers and new bone formation on the surface of the graft particles; this regenerative effect was more pronounced using the Bio-Oss/Bio-Gide combination, which resulted in 7 mm of new cementum and periodontal ligament and extensive new bone incorporating the graft. The membrane was intact at 7 months and partially degraded by 9 months after treatment. This human histologic study demonstrates that the porous bone mineral matrix used has the capacity to stimulate substantial new bone and cementum formation and that this capacity is further increased when the graft is used with a slowly resorbing collagen membrane
    corecore