49 research outputs found

    Chemical Modification Strategies for the Preparation of Bioactive Interfaces

    Get PDF
    Biomimetic systems and interfaces allow to understand and control cellular behavior in a well defined and reproducible manner. In this study three different strategies are developed to prepare such simplified, well-defined biomimetic materials. Firstly, a combination of click chemistry and gold thiol interactions allows the presentation of two distinct signaling molecules at controlled density and arrangement to investigate the cross-talk between two signaling molecules in cell culture. Secondly, the commonly used Ni2+-NTA interaction with His6- tagged proteins is substantially improved in its stability and inertness for protein immobilization on SAMs by replacing the Ni2+ ions with Co3+ in the complex. Thirdly, His6-tagged proteins are stably tethered on TiO2 nanoparticles for targeted delivery. To produce dual functionalized gold nanostructured interfaces, first the presentation of a ligand of interest with azide functionality on glass substrates at controlled density is established. For this pirpose, alkyne terminated poly(ethylene glycol) (PEG) is covalently bound to glass through a silanization reaction and subsequently modified through copper catalyzed azide alkyne cycloaddition (CuAAC). The functionalization density can be statistically tuned through the coimmobilization of a methoxy-terminated PEG. The surface coating and its modification with the CuAAC is analyzed using fluorescence microscopy, XPS, an enzymatic digestion assay for the determination of the ligand density, QCM-D and in cell adhesion studies. This PEG coating is used in combination with the established gold nanostructured surfaces to generate orthogonally dual functionalized biomimetic interfaces where one of the ligands is attached to the PEG coating between the gold nanoparticles using the CuAAC and the second ligand is attached to the gold nanoparticles using the gold thiol interaction. These interfaces, which present two distinct ligands at controlled density and arrangement, are suitable to investigate the mutual influence of two signaling molecules on cell behavior. Exemplarily, the combined effect of the adhesion peptide cRGD and the synergy site PHSRN on REF fibroblast adhesion is investigated. While on neither of the monofunctionalized substrates the cells can attach, the cells adhere on the dual functionalized cRGD and PHSRN presenting interfaces. The second part of this study deals with the stable immobilization of His-tagged proteins on NTA presenting surfaces using the cobalt(III) mediated interaction. The cobalt(III) complex is generated by first preforming the well established cobalt(II) complex between NTA and His6-tagged proteins and the subsequent chemical oxidation of Co2+ to Co3+ with hydrogen peroxide. A comparison of the Ni(II) and Co(III) mediated interaction between NTA moieties and His6-GFP reveals the lability of the Ni(II) and stability of the Co(III) complexes against high concentrations of competing ligands and washing off overtime. Further, also the resistance of the Co(III) mediated interaction against reducing agents is demonstrated. The oxidation step in this immobilization strategy can potentially harm the protein’s activity and this has to be investigated case by case. To illustrate that this method can be used to immobilize functional protein, the His6-tagged protein A is immobilized through the Co(III) mediated interaction and it is shown that the oxidation step dosen’t influence the immunoglobulin binding activity. In the third part the Co(III) mediated stable immobilization of His-tagged proteins is used to biofunctionalize TiO2 nanoparticles. Here, the photocatalytic activity of TiO2 is taken advantage of to perform the oxidation of Co(II) complexes between the chelating TETT surface coating on the TiO2 nanoparticles and a His-tagged protein. The Co2+ ion loading capacity of the nanoparticles and their photocatalytic activity is characterized with a colorimetric assay, fluorescence studies using terephtahlic acid as radical detection reagent, absorbance measurements, DLS and zeta potential measurements proving the photo-mediated oxidation of coordinated Co2+ ions to Co3+. Exemplarily, the stable immobilization of the model protein His6-GFP and of the glycoprotein transferrin-His6 is studied

    Orchestration of employees\u27 creativity: A phased approach

    Get PDF
    Digital innovation is a promising but challenging way for established organizations to achieve sustainable competitive advantage. A young research stream focuses on the development of innovations by means of employee involvement, which uses the knowledge and creativity of employees. Although it is clear that employees have been innovation drivers, studies on the roles of knowledge and creativity as foundations of employee-driven innovation are all but absent from the literature. Since not all individuals are equally creative, we investigate, through the analytical lens of the model of creativity and innovation, whether domain knowledge matters or if teams lacking domain knowledge can deliver satisfying results, too. The data collection is based on two design-thinking workshops including interviews, observations, and a survey with domain experts who evaluate the prototypes. Opposing to common assumptions of creativity techniques, domain knowledge is fundamental for developing digital innovations

    Expression of a large coding sequence: Gene therapy vectors for Ataxia Telangiectasia

    Full text link
    Ataxia telangiectasia is a monogenetic disorder caused by mutations in the ATM gene. Its encoded protein kinase ATM plays a fundamental role in DNA repair of double strand breaks (DSBs). Impaired function of this kinase leads to a multisystemic disorder including immunodeficiency, progressive cerebellar degeneration, radiation sensitivity, dilated blood vessels, premature aging and a predisposition to cancer. Since allogenic hematopoietic stem cell (HSC) transplantation improved disease outcome, gene therapy based on autologous HSCs is an alternative promising concept. However, due to the large cDNA of ATM (9.2 kb), efficient packaging of retroviral particles and sufficient transduction of HSCs remains challenging.We generated lentiviral, gammaretroviral and foamy viral vectors with a GFP.F2A.Atm fusion or a GFP transgene and systematically compared transduction efficiencies. Vector titers dropped with increasing transgene size, but despite their described limited packaging capacity, we were able to produce lentiviral and gammaretroviral particles. The reduction in titers could not be explained by impaired packaging of the viral genomes, but the main differences occurred after transduction. Finally, after transduction of Atm-deficient (ATM-KO) murine fibroblasts with the lentiviral vector expressing Atm, we could show the expression of ATM protein which phosphorylated its downstream substrates (pKap1 and p-p53)

    Pregabalin Add-On vs. Dose Increase in Levetiracetam Add-On Treatment: A Real-Life Trial in Dogs With Drug-Resistant Epilepsy

    Get PDF
    Epilepsy is a common neurological disorder affecting 0.6–0.75% of dogs in veterinary practice. Treatment is frequently complicated by the occurrence of drug-resistant epilepsy and cluster seizures in dogs with idiopathic epilepsy. Only few studies are available to guide treatment choices beyond licensed veterinary drugs. The aim of the study was to compare antiseizure efficacy and tolerability of two add-on treatment strategies in dogs with drug-resistant idiopathic epilepsy. The study design was a prospective, open-label, non-blinded, comparative treatment trial. Treatment success was defined as a 3-fold extension of the longest baseline interseizure interval and to a minimum of 3 months. To avoid prolonged adherence to a presumably ineffective treatment strategy, dog owners could leave the study after the third day with generalized seizures if the interseizure interval failed to show a relevant increase. Twenty-six dogs (mean age 5.5 years, mean seizure frequency 4/month) with drug-resistant idiopathic epilepsy and a history of cluster seizures were included. Dogs received either add-on treatment with pregabalin (PGB) 4 mg/kg twice daily (14 dogs) or a dose increase in levetiracetam (LEV) add-on treatment (12 dogs). Thirteen dogs in the PGB group had drug levels within the therapeutic range for humans. Two dogs in the PGB group (14.3%; 2/14) and one dog in the LEV group (8.3%; 1/12) achieved treatment success with long seizure-free intervals from 122 to 219 days but then relapsed to their early seizure frequency 10 months after the study inclusion. The overall low success rates with both treatment strategies likely reflect a real-life situation in canine drug-resistant idiopathic epilepsy in everyday veterinary practice. These results delineate the need for research on better pharmacologic and non-pharmacologic treatment strategies in dogs with drug-resistant epilepsy

    The lesser purple emperor butterfly, Apatura ilia: from mimesis to biomimetics

    Get PDF
    Until now, hues as dynamic as those adorning the Apatura emperor butterflies have never been encountered in the painting world. Unlike and unmatched by the chemical pigments traditionally found on the painter’s palette, the emperor’s wings are studded with strongly reflecting iridescent scales that are structured like those of the iconic Morpho butterflies. The scale ridges act as diffractive multilayers, giving rise to narrow-band reflectance spectra. All scales together create a vividly purple iridescent wing colouration that is observed within a narrow angular range only. Recently, synthetic structures analogous to the multilayer reflectors found on butterfly wings have been developed, referred to as effect pigments. Artists can obtain vital clues for how to adapt and adopt these challenging new materials for painting, by tracing the origin of biomimetics back to the ancient concept of mimesis and building on the knowledge accumulated by optical studies. By selecting various effect pigments, and using the lesser purple emperor butterfly, Apatura ilia, as exemplar, we have accurately mimicked the butterfly’s iridescence in art. The resulting artwork, like the butterfly, fluctuates in perceived colour depending on the direction of illumination and viewing. These nature-inspired-colouration and biomimetic-application methods extend the canon of art

    From Understanding to Sustainable Use of Peatlands: The WETSCAPES Approach

    Get PDF
    Of all terrestrial ecosystems, peatlands store carbon most effectively in long-term scales of millennia. However, many peatlands have been drained for peat extraction or agricultural use. This converts peatlands from sinks to sources of carbon, causing approx. 5% of the anthropogenic greenhouse effect and additional negative effects on other ecosystem services. Rewetting peatlands can mitigate climate change and may be combined with management in the form of paludiculture. Rewetted peatlands, however, do not equal their pristine ancestors and their ecological functioning is not understood. This holds true especially for groundwater-fed fens. Their functioning results from manifold interactions and can only be understood following an integrative approach of many relevant fields of science, which we merge in the interdisciplinary project WETSCAPES. Here, we address interactions among water transport and chemistry, primary production, peat formation, matter transformation and transport, microbial community, and greenhouse gas exchange using state of the art methods. We record data on six study sites spread across three common fen types (Alder forest, percolation fen, and coastal fen), each in drained and rewetted states. First results revealed that indicators reflecting more long-term effects like vegetation and soil chemistry showed a stronger differentiation between drained and rewetted states than variables with a more immediate reaction to environmental change, like greenhouse gas (GHG) emissions. Variations in microbial community composition explained differences in soil chemical data as well as vegetation composition and GHG exchange. We show the importance of developing an integrative understanding of managed fen peatlands and their ecosystem functioning.

    A broadly cross-reactive monoclonal antibody against hepatitis E virus capsid antigen

    Get PDF
    To generate a hepatitis E virus (HEV) genotype 3 (HEV-3)–specific monoclonal antibody (mAb), the Escherichia coli–expressed carboxy-terminal part of its capsid protein was used to immunise BALB/c mice. The immunisation resulted in the induction of HEV-specific antibodies of high titre. The mAb G117-AA4 of IgG1 isotype was obtained showing a strong reactivity with the homologous E. coli, but also yeast-expressed capsid protein of HEV-3. The mAb strongly cross-reacted with ratHEV capsid protein derivatives produced in both expression systems and weaker with an E. coli–expressed batHEV capsid protein fragment. In addition, the mAb reacted with capsid protein derivatives of genotypes HEV-2 and HEV-4 and common vole hepatitis E virus (cvHEV), produced by the cell-free synthesis in Chinese hamster ovary (CHO) and Spodoptera frugiperda (Sf21) cell lysates. Western blot and line blot reactivity of the mAb with capsid protein derivatives of HEV-1 to HEV-4, cvHEV, ratHEV and batHEV suggested a linear epitope. Use of truncated derivatives of ratHEV capsid protein in ELISA, Western blot, and a Pepscan analysis allowed to map the epitope within a partially surface-exposed region with the amino acid sequence LYTSV. The mAb was also shown to bind to human patient–derived HEV-3 from infected cell culture and to hare HEV-3 and camel HEV-7 capsid proteins from transfected cells by immunofluorescence assay. The novel mAb may serve as a useful tool for further investigations on the pathogenesis of HEV infections and might be used for diagnostic purposes. Key points • The antibody showed cross-reactivity with capsid proteins of different hepeviruses. • The linear epitope of the antibody was mapped in a partially surface-exposed region. • The antibody detected native HEV-3 antigen in infected mammalian cells

    Clinical Course and Diagnostic Findings of Biopsy Controlled Presumed Immune-Mediated Polyneuropathy in 70 European Cats

    Get PDF
    There is a paucity of information on the clinical course and outcome of young cats with polyneuropathy. The aim of the study was to describe the clinical features, diagnostic investigations, and outcome of a large cohort of cats with inflammatory polyneuropathy from several European countries. Seventy cats with inflammatory infiltrates in intramuscular nerves and/or peripheral nerve biopsies were retrospectively included. Information from medical records and follow up were acquired via questionnaires filled by veterinary neurologists who had submitted muscle and nerve biopsies (2011–2019). Median age at onset was 10 months (range: 4–120 months). The most common breed was British short hair (25.7%), followed by Domestic short hair (24.3%), Bengal cat (11.4%), Maine Coon (8.6%) and Persian cat (5.7%), and 14 other breeds. Male cats were predominantly affected (64.3%). Clinical signs were weakness (98.6%) and tetraparesis (75.7%) in association with decreased withdrawal reflexes (83.6%) and, less commonly, cranial nerve signs (17.1%), spinal pain/hyperesthesia (12.9%), and micturition/defecation problems (14.3%). Onset was sudden (30.1%) or insidious (69.1%), and an initial progressive phase was reported in 74.3%. Characteristic findings on electrodiagnostic examination were presence of generalized spontaneous electric muscle activity (89.6%), decreased motor nerve conduction velocity (52.3%), abnormal F-wave studies (72.4%), pattern of temporal dispersion (26.1%) and unremarkable sensory tests. The clinical course was mainly described as remittent (49.2%) or remittent-relapsing (34.9%), while stagnation, progressive course or waxing and waning were less frequently reported. Relapses were common and occurred in 35.7% of the cats' population. An overall favorable outcome was reported in 79.4% of patients. In conclusion, young age at the time of diagnosis and sudden onset of clinical signs were significantly associated with recovery (p < 0.05). Clinical and electrodiagnostic features and the remittent-relapsing clinical course resembles juvenile chronic inflammatory demyelinating polyneuropathy (CIDP), as seen in human (children/adolescents), in many aspects

    Biopsy Characteristics, Subtypes, and Prognostic Features in 107 Cases of Feline Presumed Immune-Mediated Polyneuropathy

    Get PDF
    Inflammatory polyradiculoneuropathy (IMPN) is one of the causes of sudden onset of neuromuscular signs such as para-/tetraparesis in young cats. Even though most cases have a favorable outcome, persistent deficits, relapses, and progressive courses are occasionally seen. As clinical presentation does not always appear to predict outcome and risk of recurrence, this study was initiated to screen for prognostic biopsy findings in a large cohort of histologically confirmed IMPN cases with clinical follow-up. In total, nerve and muscle specimens of 107 cats with biopsy diagnosis of presumed autoreactive inflammatory polyneuropathy and 22 control cases were reviewed by two blinded raters for a set of 36 histological parameters. To identify patterns and subtypes of IMPN, hierarchical k-means clustering of 33 histologic variables was performed. Then, the impact of histological parameters on IMPN outcome was evaluated via an univariate analysis to identify variables for the final multivariate model. The data on immediate outcome and follow-up were collected from submitting neurologists using a purpose-designed questionnaire. Hierarchical k-means clustering sorted the tissues into 4 main categories: cluster 1 (44/129) represents a purely inflammatory IMPN picture, whereas cluster 2 (47/129) was accompanied by demyelinating features and cluster 3 (16/129) by Wallerian degeneration. Cluster 4 (22/129) reflects normal tissues from non-neuropathic control cats. Returned questionnaires provided detailed information on outcome in 63 animals. They were categorized into recovered and non-recovered. Thereby, fiber-invasive infiltrates by mononuclear cells and mild fiber loss in intramuscular nerve branches correlated with higher probabilities of recovery. Remyelination in semithin sections, on the other hand, is correlated with a less favorable outcome. Animals grouping in cluster 1 had a tendency to a higher probability of recovery compared to other clusters. In conclusion, diagnosis of feline IMPN from nerve and muscle biopsies allowed for the identification of histologic features that were positively or negatively correlated with outcome
    corecore