120 research outputs found

    Chameleon-Photon Mixing in a Primordial Magnetic Field

    Full text link
    We consider the non-resonant mixing between photons and scalar ALPs with masses much less than the plasma frequency along the path, with specific reference to the chameleon scalar field model. The mixing would alter the intensity and polarization state of the cosmic microwave background (CMB) radiation. We find that the average modification to the CMB polarization modes is negligible. However the average modification to the CMB intensity spectrum is more significant and we compare this to high precision measurements of the CMB monopole made by the far infrared absolute spectrophotometer (FIRAS) on board the COBE satellite. The resulting 95\% confidence limit on the scalar-photon conversion probability in the primordial field (at 100 GHz) is P < 2.6x10^{-2}. This corresponds to a degenerate constraint on the photon-scalar coupling strength, g, and the magnitude of the primordial magnetic field. Taking the upper bound on the strength of the primordial magnetic field derived from the CMB power spectra, B < 5.0x10^{-9}G, this would imply an upper bound on the photon-scalar coupling strength in the range g < 7.14x10^{-13}GeV^{-1} to g < 9.20x10^{-14}GeV^{-1}, depending on the power spectrum of the primordial magnetic field.Comment: 12 pages, 2 figures; updated to reflect published versio

    The Chameleonic Contribution to the SZ Radial Profile of the Coma Cluster

    Full text link
    We constrain the chameleonic Sunyaev--Zel'dovich (CSZ) effect in the Coma cluster from measurements of the Coma radial profile presented in the WMAP 7-year results. The CSZ effect arises from the interaction of a scalar (or pseudoscalar) particle with the cosmic microwave background in the magnetic field of galaxy clusters. We combine this radial profile data with SZ measurements towards the centre of the Coma cluster in different frequency bands, to find Delta T_{SZ,RJ}(0)=-400+/-40 microKelvin and Delta T_{CSZ}^{204 GHz}(0)=-20+/-15 microKelvin (68% CL) for the thermal SZ and CSZ effects in the cluster respectively. The central value leads to an estimate of the photon to scalar (or pseudoscalar) coupling strength of g = (5.2 - 23.8) x 10^{-10} GeV^{-1}, while the 95% confidence bound is estimated to be g < (8.7 - 39.4) x 10^{-10} GeV^{-1}.Comment: 13 pages, 3 figure

    Evolution of the Chameleon Scalar Field in the Early Universe

    Full text link
    In order to satisfy limits on the allowed variation of particle masses from big bang nucleosynthesis (BBN) until today, the chameleon scalar field is required to reach its attractor solution early on in its cosmological evolution. Brax et al. (2004) have shown this to be possible for certain specific initial conditions on the chameleon field at the end of inflation. However the extreme fine-tuning necessary to achieve this, poses a problem if the chameleon is to be viewed a natural candidate for dark energy. In this article we revisit the behaviour of the chameleon in the early Universe, including the additional coupling to electromagnetism proposed by Brax et al. (2011). Solving the chameleon evolution equations in the presence of a primordial magnetic field, we find that the strict initial conditions on the chameleon field at the end of inflation can be relaxed, and we determine the associated lower bound on the strength of the primordial magnetic field.Comment: 14 pages, 4 figures, accepted for publication in Phys. Rev.

    Incorporating Horizontal Density Variations into Large‐scale Modelling of Ice Masses

    Get PDF
    Gravity-driven flow of large ice masses such as the Antarctic Ice Sheet (AIS) depends on both the geometry and the mass density of the ice sheet. The vertical density profile can be approximated as pure ice overlain by a firn layer of varying thickness, and for the AIS the firn thickness is not uncommonly 10 to 20% of the total thickness, leading to not insignificant variation in density. Nevertheless, in most vertically-integrated ice-flow models today the density is assumed constant, sometimes with an adjustment in thickness to compensate. In this study, we explore the treatment of horizontal density variations (HDVs) within vertically-integrated ice-sheet models. We assess the relative merits and shortcomings of previously proposed approaches, and provide new formulations for including HDVs. We use perturbation analysis to derive analytical solutions that describe the impact of density variations on ice flow for both grounded ice and floating ice shelves, which reveal significant qualitative differences between each of the proposed density formulations. Furthermore, by modelling the transient evolution of a large sector of the West Antarctic Ice Sheet (WAIS), we quantify the potential impact of HDVs on estimated sea level change. For the domain we considered, we find that explicitly including the horizontal density gradients in the momentum and mass conservation equations leads to about a 10% correction in the estimated change in volume above flotation over 40 years. We conclude that including horizontal density variations in flow modelling of the Antarctic Ice Sheet is important for accurate predictions of mass loss

    Antibodies that conformationally activate ADAMTS13 allosterically enhance metalloprotease domain function

    Get PDF
    Plasma ADAMTS13 circulates in a folded conformation that is stabilized by an interaction between the central Spacer domain and the C-terminal CUB (complement components C1r and C1s, sea urchin protein Uegf, and bone morphogenetic protein-1) domains. Binding of ADAMTS13 to the VWF D4(-CK) domains or to certain activating murine monoclonal antibodies (mAbs) induces a structural change that extends ADAMTS13 into an open conformation that enhances its function. The objective was to characterize the mechanism by which conformational activation enhances ADAMTS13-mediated proteolysis of VWF. The activating effects of a novel anti-Spacer (3E4) and the anti-CUB1 (17G2) mAbs on the kinetics of proteolysis of VWF A2 domain fragments by ADAMTS13 were analyzed. mAb-induced conformational changes in ADAMTS13 were investigated by enzyme-linked immunosorbent assay. Both mAbs enhanced ADAMTS13 catalytic efficiency (kcat/Km) by ∼twofold (3E4: 2.0-fold; 17G2: 1.8-fold). Contrary to previous hypotheses, ADAMTS13 activation was not mediated through exposure of the Spacer or cysteine-rich domain exosites. Kinetic analyses revealed that mAb-induced conformational extension of ADAMTS13 enhances the proteolytic function of the metalloprotease domain (kcat), rather than augmenting substrate binding (Km). A conformational effect on the metalloprotease domain was further corroborated by the finding that incubation of ADAMTS13 with either mAb exposed a cryptic epitope in the metalloprotease domain that is normally concealed when ADAMTS13 is in a closed conformation. We show for the first time that the primary mechanism of mAb-induced conformational activation of ADAMTS13 is not a consequence of functional exosite exposure. Rather, our data are consistent with an allosteric activation mechanism on the metalloprotease domain that augments active site function

    Inferring superposition and entanglement from measurements in a single basis

    Full text link
    We discuss what can be inferred from measurements on one- and two-qubit systems using a single measurement basis at various times. We show that, given reasonable physical assumptions, carrying out such measurements at quarter-period intervals is enough to demonstrate coherent oscillations of one or two qubits between the relevant measurement basis states. One can thus infer from such measurements alone that an approximately equal superposition of two measurement basis states has been created in a coherent oscillation experiment. Similarly, one can infer that a near maximally entangled state of two qubits has been created in an experiment involving a putative SWAP gate. These results apply even if the relevant quantum systems are only approximate qubits. We discuss applications to fundamental quantum physics experiments and quantum information processing investigations.Comment: Final published versio

    Generation of anti-idiotypic antibodies to detect anti-spacer antibody idiotopes in acute thrombotic thrombocytopenic purpura patients

    Get PDF
    In autoantibody-mediated autoimmune diseases, autoantibody profiling allows to stratify patients and link autoantibodies with disease severity and outcome. However, in immune-mediated thrombotic thrombocytopenic purpura patients, stratification according to antibody profiles and their clinical relevance has not been fully explored. We aimed at developing a new type of autoantibody profiling assay for immune-mediated thrombotic thrombocytopenic purpura based on the use of anti-idiotypic antibodies. Anti-idiotypic antibodies against 3 anti-spacer autoantibodies were generated in mice and were used to capture the respective anti-spacer idiotopes from 151 acute immune-mediated thrombotic thrombocytopenic purpura plasma samples. We next deciphered these anti-spacer idiotope profiles in immune-mediated thrombotic thrombocytopenic purpura patients and investigated if these limited idiotope profiles could be linked with disease severity. We developed 3 anti-idiotypic antibodies that recognized particular idiotopes in the anti-spacer autoantibodies II-1, TTP73 or I-9, that are involved in ADAMTS13 binding. Thirty-five, 24 and 42% of patients were positive for antibodies with the II-1, TTP73 and I-9 idiotopes, respectively. Stratifying patients according to the corresponding 8 anti-spacer idiotope profiles revealed an until now unknown insight into the anti-spacer II-1, TTP73 and I-9 idiotope profiles in these patients. Finally, these limited idiotope profiles showed no association with disease severity. We successfully developed 3 anti-idiotypic antibodies that allowed us to determine the profiles of the anti-spacer II-1, TTP73 and I-9 idiotopes in immune-mediated thrombotic thrombocytopenic purpura patients. Increasing the number of patients and/or future development of additional anti-idiotypic antibodies against other anti-ADAMTS13 autoantibodies might allow to identify idiotope profiles of clinical, prognostic value
    corecore