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Abstract 

In autoantibody-mediated autoimmune diseases, autoantibody profiling allows to stratify 

patients and link autoantibodies with disease severity and outcome. However, in immune-

mediated thrombotic thrombocytopenic purpura patients, stratification according to antibody 

profiles and their clinical relevance has not been fully explored. We aimed at developing a new 

type of autoantibody profiling assay for immune-mediated thrombotic thrombocytopenic 

purpura based on the use of anti-idiotypic antibodies. Anti-idiotypic antibodies against 3 anti-

spacer autoantibodies were generated in mice and were used to capture the respective anti-

spacer idiotopes from 151 acute immune-mediated thrombotic thrombocytopenic purpura 

plasma samples. We next deciphered these anti-spacer idiotope profiles in immune-mediated 

thrombotic thrombocytopenic purpura patients and investigated if these limited idiotope 

profiles could be linked with disease severity. We developed 3 anti-idiotypic antibodies that 

recognized particular idiotopes in the anti-spacer autoantibodies II-1, TTP73 or I-9, that are 

involved in ADAMTS13 binding. Thirty-five, 24 and 42% of patients were positive for antibodies 

with the II-1, TTP73 and I-9 idiotopes, respectively. Stratifying patients according to the 

corresponding 8 anti-spacer idiotope profiles revealed an until now unknown insight into the 

anti-spacer II-1, TTP73 and I-9 idiotope profiles in these patients. Finally, these limited idiotope 

profiles showed no association with disease severity. We successfully developed 3 anti-idiotypic 

antibodies that allowed us to determine the profiles of the anti-spacer II-1, TTP73 and I-9 

idiotopes in immune-mediated thrombotic thrombocytopenic purpura patients. Increasing the 

number of patients and/or future development of additional anti-idiotypic antibodies against 

other anti-ADAMTS13 autoantibodies might allow to identify idiotope profiles of clinical, 

prognostic value. 

 

Keywords autoimmune disease, antibody profiling, anti-idiotypic antibody, thrombotic 

thrombocytopenic purpura, ADAMTS13 
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Introduction 

In autoantibody-mediated autoimmune diseases, patients develop autoantibodies against self-

antigens.
1
 The autoantibody response can be directed to multiple self-antigens like in systemic 

sclerosis
2
, Sjögren syndrome

3
 and type 1 diabetes

4
 or to a single self-antigen like myasthenia 

gravis
5
 and Graves’ disease.

6
 Patients suffering from the autoimmune disorder immune-

mediated thrombotic thrombocytopenic purpura (iTTP) present with an autoantibody response 

against one antigen, the von Willebrand factor (VWF) cleaving protease ADAMTS13 (A 

Disintegrin And Metalloprotease with ThromboSpondin type 1 repeats, member 13).
7,8

 

Deficiency in ADAMTS13 leads to accumulation of hyper-active ultra-large VWF multimers that 

spontaneously interact with platelets. The resulting microthrombi block arterioles and 

capillaries, which leads to severe thrombocytopenia, hemolytic anemia and organ failure. The 

VWF cleaving protease ADAMTS13 consists of 14 domains: the metalloprotease (M), disintegrin-

like (D), cysteine-rich (C) and spacer (S) domains, 8 thrombospondin type 1 repeats (T1-8) and 2 

CUB domains.
9
 It is known that the anti-ADAMTS13 autoimmune response in iTTP patients is 

polyclonal but 80-100% of patients possess autoantibodies targeting the cysteine-rich and 

spacer domain.
7,10–12

 The standard treatment for iTTP is plasma exchange (PEX) often in 

combination with immunosuppressive agents (mainly steroids and rituximab).
8
 Recently, the 

anti-VWF nanobody caplacizumab, used as a frontline therapy together with PEX hastened TTP 

recovery, opening promising perspectives to improve the prognosis of the disease.
13,14

 

Splenectomy is only performed in the most severe patients, when other measures have 

failed.
8,15

 

Since autoimmune diseases manifest differently among patients and have a chronic course with 

recurring acute bouts, biomarkers are identified that allow patient stratification to predict 

disease outcome and prognosis and to adapt specific treatment.
16

 Obviously, autoantibodies are 

useful biomarkers in autoimmune diseases and autoantibody profiling has been shown to be 

valuable in stratifying patients with autoimmune disorders.
17,18

 On the one hand, autoantibody 

profiling approaches are based on the binding of the patient autoantibodies to the disease 

causing antigen (recombinant proteins, fragments thereof or peptides).
19,20

 Whereas, on the 

other hand, autoantibody profiling can be done independent of the antigen using anti-idiotypic 
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antibodies that recognize autoantibodies that bind to the antigen (Figure 1).
21

 Anti-idiotypic 

antibodies can be generated by immunizing mice with purified or cloned antigen-binding 

antibodies.
22–24

 Antibodies that bind to particular idiotopes involved in antigen binding can next 

be used to detect specific autoantibodies in patient plasma or serum.
21

 Finally, even if the 

disease-causing antigen is not known, antibody profiling can lead to the identification of 

disease-linked peptides using next generation sequencing
25

 and mass spectrometry
26,27

 of the 

total antibody response in autoimmune disease patients. 

Also iTTP is a chronic disease with a variable disease outcome and risk for relapse.
28

 Levels of 

ADAMTS13 activity, anti-ADAMTS13 autoantibody subtypes, ADAMTS13 antigen levels or a 

combination thereof have been used to identify patient groups with a worse disease outcome 

or a higher risk for relapse.
28–35

 Although the outcome of the different studies is variable, it has 

been shown for example that an ADAMTS13 activity < 10% during acute disease is linked with 

an increased risk for relapse
35

 and that presenting anti-ADAMTS13 autoantibody and 

ADAMTS13 antigen levels predict prognosis.
31

 In addition, prognostic scoring systems based on 

clinical and or laboratory parameters have been set up to predict severe cases and patients at 

risk; from 1987 with the Rose index
36,37

, to more recently the PLASMIC score
38

 and the score by 

Benhamou et al..
39

 The predictive model set up by Benhamou and colleagues takes into account 

age, lactate dehydrogenase (LDH) levels and cerebral involvement and detects early death in 

acquired severe ADAMTS13 deficiency-associated idiopathic TTP.
39

 However, in iTTP, 

autoantibody profiling has not been extensively explored yet to stratify patients. 

 

In this project, we developed an autoantibody profiling assay for iTTP using anti-idiotypic 

antibodies that recognize particular idiotopes on anti-ADAMTS13 autoantibodies, idiotopes that 

are involved in ADAMTS13 binding (Figure 1). Since the ADAMTS13 spacer domain seems to be 

the main immunogenic region targeted in these patients
29

, we generated an anti-idiotypic 

antibody against 3 available cloned human anti-spacer autoantibodies. The selected anti-

idiotypic antibodies were then used to screen 151 iTTP plasmas for the presence of 

autoantibodies with the same idiotopes across patients, which resulted in stratification of iTTP 
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patients according to these anti-spacer idiotope profiles. We next investigated in a subgroup of 

95 patients whether certain anti-spacer idiotope profiles could be linked with disease severity.  
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Methods 

Immunization strategy and characterization of anti-II-1, anti-TTP73 and anti-I-9 antibodies 

Anti-II-1, anti-TTP73 and anti-I-9 antibodies were developed by immunizing BALB/c mice (Janvier 

Labs, Le Genest-Saint-Isle, France) with the cloned human anti-spacer autoantibodies II-1
40

, 

TTP73, or I-9
41

, respectively (see immunization strategy in Supplemental methods). The binding 

of purified anti-II-1, anti-TTP73 or anti-I-9 antibodies to II-1, TTP73 and I-9 respectively and to 

the conserved regions (Figure 1, grey) in human immunoglobulin G (IgG) antibodies were 

identified using ELISA (see ‘ELISA to study the binding of murine anti-II-1, anti-TTP73 and anti-I-9 

antibodies to coated human anti-spacer autoantibodies II-1, TTP73 and I-9 and, to a pool of 

human IgG antibodies’ in Supplemental material and methods).  

 

ELISA to identify anti-II-1, anti-TTP73 and anti-I-9 antibodies that inhibit the binding of 

respectively anti-spacer autoantibodies II-1, TTP73 or I-9 to ADAMTS13 

Human anti-spacer autoantibodies II-1, TTP73 or I-9 (constant final EC50: 0.04, 0.85 and 0.04 

µg/mL, respectively; see Supplemental methods), were pre-incubated with a 1 in 2 dilution 

series of murine anti-II-1, anti-TTP73 or anti-I-9 antibodies (final start concentration 10 µg/mL) 

respectively, in a pre-blocked plate. After 30 minutes, samples were transferred to a 

recombinant human (rh)ADAMTS13 (2.7 µg/mL in phosphate buffered saline (PBS)) coated 

plate. Bound human anti-spacer autoantibodies II-1, TTP73 or I-9 were detected using a mixture 

of HRP-labelled anti-human IgG1-4 (IgG1: 1/20,000 and IgG2-4: 1/2,000; Sanquin, Amsterdam, The 

Netherlands) (see Supplemental methods for more details).  

 

ELISA to study the binding of the anti-idiotypic antibodies to the anti-spacer idiotopes of II-1, 

TTP73 and I-9 

Murine anti-idiotypic antibodies 17H9 (anti-II-1 antibody), 9G12 (anti-TTP73 antibody) and 7D10 

(anti-I-9 antibody) were coated at 5 µg/mL in carbonate/bicarbonate coating buffer (50mM 

Na2CO3/NaHCO3, pH 9.6). After blocking, human anti-spacer autoantibodies II-1, TTP73 and I-9 

were added at a start concentration of 1 µg/mL and further 1 in 2 diluted. Bound anti-spacer 
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autoantibodies were detected by adding a mixture of anti-human IgG1-4-HRP antibodies 

(Sanquin) (see Supplemental methods for more details).  

 

Patient samples 

Detailed information about the 151 iTTP plasma samples can be found in Supplemental 

methods ‘Patient samples’. The study protocol was approved by the Medical Ethical Committee 

of the University Medical Center Utrecht (Utrecht, The Netherlands), the Ethics Committee of 

Hospital Pitié-Salpêtrière and Hospital Saint-Antoine (Paris, France) and the Ethics Committee of 

Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico (Milan, Italy), and was in 

accordance with the Declaration of Helsinki. 

 

ELISA to identify the presence of anti-spacer idiotope profiles in plasmas of acute iTTP 

patients using the newly developed anti-idiotypic antibodies 

Murine anti-idiotypic antibody 17H9 (anti-II-1 antibody), 9G12 (anti-TTP73 antibody) or 7D10 

(anti-I-9 antibody) were coated at 5 µg/mL. After blocking, patient plasma (start dilution 10%, 

v/v) was added and 1 in 2 diluted. Bound patient antibodies were detected with anti-human 

IgG1-4-HRP (Sanquin) (see Supplemental methods for more details).  

 

Statistical analysis 

Graphpad Prism v5.03 software (GraphPad Software Inc., San Diego, CA, USA) was used for 

statistical analysis (see Supplemental methods for more details).  
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Results 

Development of anti-idiotypic antibodies against idiotopes in anti-spacer autoantibodies II-1, 

TTP73 or I-9 involved in ADAMTS13 binding  

To generate anti-idiotypic antibodies recognizing particular idiotopes in anti-spacer 

autoantibodies involved in ADAMTS13 binding, three cloned human anti-spacer autoantibodies 

with different epitopes and inhibitory characteristics were available: II-1
40

, TTP73
42

 and I-9
41

 

(see supplemental material and methods) and were used to immunize BALB/c mice. As the 

injected anti-spacer autoantibodies are full IgG antibodies in which the variable regions are 

grafted on a human IgG1 constant region
40,41

, the mice developed antibodies that either 

recognized conserved regions (e.g. constant regions: CH and CL and framework regions in VH and 

VL; Figure 1, grey parts) or idiotopes in the complementarity determining regions (CDRs) of the 

VH and VL of II-1, TTP73 and I-9 (Figure 1, dark and light blue dots). We obtained 1 mouse 

monoclonal antibody that recognized anti-spacer autoantibody II-1, 2 that recognized anti-

spacer autoantibody TTP73 and 10 that recognized anti-spacer autoantibody I-9 (Figure 2A) as 

the generated antibodies bound to the coated anti-spacer autoantibodies II-1, TTP73 or I-9, 

respectively. To identify which of the generated monoclonal antibodies recognized the 

conserved part of the human autoantibodies (CH, CL and framework regions in VH and VL; Figure 

1, grey parts), their binding to a pool of purified human IgG antibodies was studied. Monoclonal 

antibody 17H9 recognizing anti-spacer autoantibody II-1 did not recognize the conserved part of 

the coated human IgG antibodies (Figure 2B), while 1 of the monoclonal antibodies (20H3) 

recognizing anti-spacer autoantibody TTP73 and 9 of the monoclonal antibodies (1E6, 5C8, 6C9, 

7E8, 9F9, 9G9, 9H4, 11F7, and 14G6) recognizing anti-spacer autoantibody I-9 did bind to the 

conserved part of the coated human IgG antibodies (Figure 2B). Hence, monoclonal antibodies 

17H9, 9G12 and 7D10 are anti-idiotypic antibodies that target idiotopes in the CDRs of VH and VL 

of respectively anti-spacer autoantibody II-1, TTP73 or I-9 (Figure 2B). 

We next aimed to identify if the anti-idiotypic antibodies recognizing particular idiotopes in the 

anti-spacer autoantibodies II-1, TTP73 and I-9 are anti-idiotypic antibodies that are involved in 

ADAMTS13 binding (Figure 1, dark blue antibody). To do so, we used a competition ELISA where 

we studied if the binding of anti-spacer autoantibodies II-1, TTP73 and I-9 could be inhibited by 
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their respective anti-idiotypic antibody. The 3 developed anti-idiotypic antibodies (17H9, 9G12 

and 7D10) inhibited the binding of their respective anti-spacer autoantibodies (II-1, TTP73 and I-

9) to rhADAMTS13 (Figure 2C). Figure 2D summarizes the developed murine anti-II-1, anti-TTP73 

and anti-I-9 antibodies targeting the conserved region of the antibody (grey) or the anti-

idiotypic antibodies specific for the idiotopes present in the CDRs (in red, green, orange) of anti-

spacer autoantibody II-1, TTP73 and I-9 respectively. 

In conclusion, we developed 3 anti-idiotypic antibodies that recognize particular idiotopes in the 

anti-spacer autoantibodies II-1, TTP73 and I-9 that are involved in ADAMTS13 binding, as they 

strongly inhibit the binding of anti-spacer autoantibodies II-1, TTP73 or I-9, respectively, to 

rhADAMTS13. 

 

Anti-idiotypic antibodies and their binding to idiotopes in II-1, TTP73 and I-9 

Since anti-spacer autoantibodies II-1 and I-9 have overlapping but different epitopes (see 

Supplemental methods)
43

, they will have both shared and unique idiotopes. We therefore 

investigated whether anti-idiotypic antibodies developed against anti-spacer autoantibody II-1 

(17H9) and I-9 (7D10) recognized shared or unique idiotopes in II-1 and I-9. As a control, we 

included the anti-idiotypic antibody 9G12 developed against the anti-spacer autoantibody 

TTP73, which does not have an overlapping epitope with II-1 and I-9. 

The anti-idiotypic antibody against anti-spacer autoantibody II-1 (17H9) recognized a unique 

idiotope in II-1 as it only captured II-1 and not anti-spacer autoantibodies I-9 and TTP73 (Figure 

3A). As expected, the anti-idiotypic antibody against TTP73 (9G12) also recognized a unique 

idiotope in anti-spacer TTP73 as it only captured TTP73 and not anti-spacer autoantibodies II-1 

and I-9 (Figure 3B). In contrast, the anti-idiotypic antibody (7D10) against the anti-spacer I-9 

idiotope captured both anti-spacer autoantibody I-9 and II-1 (Figure 3C) showing that anti-

idiotypic antibody 7D10 recognizes a common idiotope in II-1 and I-9.  

In conclusion, these data show that the anti-idiotypic antibodies against anti-spacer 

autoantibody II-1 (17H9) and TTP73 (9G12) recognize a unique idiotope in II-1 and TTP73 

respectively, whereas the anti-idiotypic antibody developed against anti-spacer autoantibody I-9 

(7D10) recognizes an idiotope present in both anti-spacer autoantibodies II-1 and I-9 (Figure 3). 
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Identification of anti-spacer idiotope profiles in plasmas of acute iTTP patients using the 

newly developed anti-idiotypic antibodies 

In a first step, we screened the plasmas of 151 iTTP patients for the presence or absence of the 

anti-spacer II-1, TTP-73 and I-9 idiotopes using the 3 newly developed anti-idiotypic antibodies. 

In a second step, we stratified the patients according to their anti-spacer idiotope profile. 

The 151 iTTP plasma samples were all collected during an acute iTTP episode (see detailed 

information in Supplemental methods). All patients presented with severe ADAMTS13 

deficiency (< 10% activity) and detectable anti-ADAMTS13 IgG titers. Anti-ADAMTS13 IgG titers 

ranged from 16 to ≥100 IU/mL (median: 87 IU/mL, Figure 4). Of the 151 iTTP patients, 34% 

(52/151) were positive for antibodies with the anti-spacer II-1 idiotope (recognized by anti-

idiotypic antibody 17H9) (Figure 4A, red dots) with median anti-spacer II-1 idiotope levels of 47 

ng/mL (Figure 4A, red squares). Twenty-five percent (37/151) of the patients were positive for 

antibodies with anti-spacer TTP73 idiotope (recognized by anti-idiotypic antibody 9G12) (Figure 

4B, green dots) with median anti-spacer TTP73 idiotope levels of 174 ng/mL (Figure 4B, green 

squares). Forty-two percent (63/151) of the patients were positive for antibodies with anti-

spacer I-9 idiotope (recognized by anti-idiotypic antibody 7D10) (Figure 4C, orange dots) with 

median anti-spacer I-9 idiotope levels of 57 ng/mL (Figure 4C, orange squares). 

We next stratified the acute iTTP patients according to their anti-spacer idiotope profile (Figure 

5). The 8 possible profiles correspond to the presence of either 1, 2, 3 or none of the 3 anti-

spacer idiotopes. All 8 anti-spacer idiotope profiles were identified in the iTTP patient cohort 

(n=151) (Figure 5). In 28% (42/151) of the patients, only one particular idiotope could be 

detected in the plasma, with 8% (12/151) having the II-1 idiotope (profile 1), 4% (6/151) having 

the TTP73 idiotope (profile 2) and 16% (24/151) having the I-9 idiotope (profile 3). In 19% 

(28/151) of the patients, 2 idiotopes were identified in their antibody repertoire, with 5% 

(7/151) having II-1 and TTP73 idiotopes (profile 4), 10% (15/151) having II-1 and I-9 idiotopes 

(profile 5) and 4% (6/151) having I-9 and TTP73 idiotopes (profile 6). In 12% (18/151) of the 

patients all 3 idiotopes were present in their antibody repertoire (profile 7). In 42% (63/151) of 

the patients none of the 3 idiotopes were detected (profile 8).  
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In conclusion, using the 3 developed anti-idiotypic antibodies, we here for the first time 

unraveled the specific II-1, TTP73 and I-9 idiotope profiles in iTTP patients and showed that 58% 

of the patients had antibodies with II-1, TTP73 and I-9 idiotopes in their plasma and this in 

different combinations while 42% of the patients were negative for these idiotopes.  

 

Anti-spacer idiotope profiles and their possible link with disease severity 

We next investigated whether the identified anti-spacer idiotope profiles (Figure 5) could be 

linked with disease severity, although the number of patients per profile group was rather low 

and we only screened for the presence or absence of 3 anti-spacer idiotopes. As a measure of 

disease severity, we studied disease outcome and applied treatment strategy. This part of the 

study was performed on the 95 patients of the French Reference Center for TMA, as detailed 

information on laboratory, clinical and outcome parameters were available for these patients 

(Supplemental Table 2).  

We first analyzed whether the anti-spacer idiotope profiles could be linked with disease 

outcome. Disease outcome was previously identified in the patients at time of diagnosis by 

determining a score defined by Benhamou et al..
39

 This score (either 1, 2, 3 or 4) is a risk score 

for early death in TTP based on 3 factors related to clinical and biological presentation (age, high 

LDH levels and cerebral involvement). A score of ≥ 3 has a positive predictive value for mortality 

(patients at risk for 30-day mortality after treatment initiation) and a score < 3 has a negative 

predictive value.
39

 To check whether the disease outcome parameter could be linked with 

specific anti-spacer idiotope profiles, we performed chi-square-based analysis. However, none 

of the anti-spacer idiotope profiles could be linked with a score of ≥ 3 (chi square, non-

significant) (Figure 6A). In line with this, there was no link between the anti-spacer idiotope 

profiles and the individual factors related to the score by Benhamou et al..
39

 (age: ANOVA, non-

significant; cerebral involvement and high LDH levels: chi square, non-significant) (Supplemental 

Figure 1).  

We next used the same approach to investigate whether anti-spacer idiotope profiles could be 

linked with the applied treatment strategy. We therefore compared the anti-spacer idiotope 

profiles in patients treated with PEX with/without rituximab and patients treated with PEX 
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with/without rituximab and additional treatment(s) (either steroids or other 

immunosuppressive drugs, e.g. cyclophosphamide, bortezomib; or/and caplacizumab or/and 

splenectomy; Supplemental Table 2). However, also treatment could not be linked with anti-

spacer idiotope profiles (chi square, non-significant) (Figure 6B). 
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Discussion 

In this paper, we successfully generated 3 anti-idiotypic antibodies that specifically recognized 

the idiotopes of anti-spacer autoantibodies II-1, TTP73 and I-9. With this anti-idiotypic assay, we 

could for the first time identify the presence or absence of anti-spacer II-1, TTP73 and I-9 

idiotopes in iTTP patients. In addition, grouping the patients according to the absence or 

presence of one, two or three of the anti-spacer idiotopes, revealed an until now unknown 

insight into the anti-spacer II-1, TTP73 and I-9 idiotopes in these patients. Although the resulting 

idiotope profiles could not be linked with disease severity, our data show that anti-idiotypic 

antibodies are interesting tools to determine an antibody profile in patients with any 

autoimmune disease.  

 

Many studies have used groups of ADAMTS13 domains to identify which ADAMTS13 domains 

(e.g. MDTCS, MDT, CS, T2-C2, T2-T8, C1-C2) are targeted by anti-ADAMTS13 autoantibodies in 

individual iTTP patients. All these studies concluded that the immune response in iTTP patients 

is polyclonal with an immuno-dominant epitope in the cysteine-spacer domain.
8,10–12,29,43–45

 

Antibody profiling based on these data, stratifies patients according to either the presence or 

absence of anti-ADAMTS13 antibodies against (a) certain domain(s). Only 2 studies investigated 

the link between domain specificity of anti-ADAMTS13 antibodies and disease severity or 

platelet counts. Thomas et al.
29

 stratified iTTP patients according to having either anti-MDTCS or 

anti-T2-C2 autoantibodies but could not identify a link with disease severity while Zheng et al.
10

 

reported an inverse correlation between the presence of IgG antibodies against the T2-T8 

and/or C1-C2 domains and platelet counts on admission. In our study, we used anti-idiotypic 

antibodies to stratify iTTP patients according to the presence or absence of anti-ADAMTS13 

antibodies with specific idiotopes. By using an anti-idiotypic antibody, we can hence investigate 

whether a specific anti-ADAMTS13 idiotope is present or absent in an iTTP patient. Indeed, with 

our 3 anti-idiotypic antibodies, we determined the until now unknown anti-spacer II-1, TTP73 

and I-9 idiotope profiles in 151 iTTP patients in acute phase. Eighteen of the 151 iTTP patients 

had all 3 anti-spacer idiotopes in their plasma, 63 patients had none of the anti-spacer idiotopes 

and 70 patients had either one or a combination of 2 of the anti-spacer idiotopes in their 
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plasma, showing that the presence of these 3 anti-spacer idiotopes is not a common feature in 

iTTP patients. In addition, anti-spacer autoantibody II-1
40

 used in this study, is a well 

characterized iTTP patient autoantibody that targets the R568-F592-R660-Y661-Y665 epitope in 

the ADAMTS13 spacer domain
43

 and is a strong inhibitor of ADAMTS13 activity
40

. Although 

about 50% of the iTTP patients have inhibitory anti-ADAMTS13 autoantibodies
29,46

, it is currently 

not known if all these patients have a II-1 idiotope in their plasma. Using our anti-idiotypic 

antibody against the anti-spacer II-1 idiotope, we now provided insight into the incidence of this 

anti-spacer II-1 idiotope in iTTP patients. Indeed, our study showed that only 34% of the 

patients had this anti-spacer idiotope in their plasma. Insight into the diversity of inhibitory anti-

ADAMTS13 autoantibodies that target the R568-F592-R660-Y661-Y665 epitope is important in 

view of the development of a targeted antibody therapy. In addition, anti-idiotypic antibodies 

allow to study epitope spreading observed in iTTP patients by following the presence of specific 

idiotopes in function of time. An additional advantage of using anti-idiotypic antibodies for 

antibody profiling is that the antigen itself is not needed for the profiling assay.
21,47

 Production 

of recombinant ADAMTS13 and its fragments in the case of iTTP is more expensive and complex 

than producing and purifying murine anti-idiotypic antibodies.  

Finally, we investigated whether we could establish a link between these anti-spacer idiotope 

profiles and disease severity (disease outcome and applied treatment strategy). However, the 

current idiotope profiles did not allow to identify specific profiles that are linked with disease 

severity. On the one hand, this can be due to the relative low number of patients per idiotope 

profile. Hence, increasing the number of patients in each idiotope profile could result in a link 

between certain profiles and disease severity. On the other hand, although that majority of iTTP 

patients do have autoantibodies against the cysteine-spacer domain, autoantibodies targeting 

other regions within or outside the cysteine-spacer domain could be of relevance, as the 

immune response is polyclonal. Hence, multiple anti-idiotypic antibodies recognizing a large 

number of anti-ADAMTS13 autoantibodies might be needed to identify autoantibody profiles in 

iTTP that predict disease outcome or that are linked with treatment. We are therefore currently 

expanding our panel of anti-idiotypic antibodies with anti-idiotypic antibodies recognizing anti-
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ADAMTS13 autoantibodies outside the spacer domain to identify autoantibody profiles of 

clinical, prognostic value. 

 

The strength of autoantibody profiling to predict disease severity and outcome in an 

autoimmune disorder where autoantibodies are developed against a single self-antigen has 

been clearly demonstrated for example in myasthenia gravis. Indeed, it has been shown that the 

presence of autoantibodies against a specific epitope in AChR is linked with disease severity in 

these patients.
48,49

 Hence, future development of anti-idiotypic antibodies against anti-

ADAMTS13 autoantibodies that are linked with disease severity, outcome and relapse remains a 

promising approach to personalize treatment of iTTP patients. 

 

In conclusion, we have shown that anti-idiotypic antibodies are useful to unravel anti-spacer 

autoantibody specificity in iTTP patients. Moreover, this approach is broadly applicable and can 

therefore be translated to perform autoantibody profiling in any antibody-mediated 

autoimmune disease. 
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Figure Legends 

Figure 1: Anti-idiotypic antibodies directed against different idiotopes in autoantibodies A 

representative autoantibody is illustrated with the variable regions of heavy (VH) and light (VL) 

chains and the constant regions of heavy (CH) and light (CL) chains. Variable regions consist of 

framework regions and complementarity determining regions (CDRs). The CDRs are unique 

among antibodies and consist of idiotopes that are involved in binding to the (self-) antigen 

(dark blue dots) and idiotopes that are not involved in binding to the (self-) antigen (light blue 

dots). All other regions are conserved regions (grey) between different antibodies and comprise 

the framework regions of the VH and VL and the constant regions of CH en CL
 
chains. Anti-

idiotypic antibodies (Abs) bind to idiotopes involved in (self-) antigen binding and hence inhibit 

the binding of the autoantibody to the (self-) antigen are depicted in dark blue. Anti-idiotypic 

antibodies that bind to idiotopes not involved in binding to the (self-) antigen are depicted in 

light blue. Anti-conserved region antibodies are depicted in grey. 

 

Figure 2: Development and characterization of anti-idiotypic antibodies that inhibit the 

binding of respectively anti-spacer autoantibody II-1, TTP73 or I-9 to rhADAMTS13 (A) Binding 

of purified murine anti-II-1 (red), anti-TTP73 (green) and anti-I-9 (orange) antibodies to coated 

human anti-spacer autoantibodies II-1, TTP73 or I-9. Bound murine anti-II-1, anti-TTP73 and 

anti-I-9 antibodies were detected using GAM-HRP. Murine anti-II-1, anti-TTP73 or anti-I-9 

antibody binding was expressed as relative absorbance values (mean ± SD, n=3) with 

absorbance of the respective positive controls (sera of mice immunized with either II-1, TTP73 

or I-9) set as 1. (B) Binding of purified murine anti-II-1 (red), anti-TTP73 (green) and anti-I-9 

(orange) antibodies to a coated human IgG pool. Bound murine anti-II-1, anti-TTP73 and anti-I-9 

antibodies were detected using GAM-HRP. Murine anti-II-1, anti-TTP73 or anti-I-9 antibody 

binding was expressed as relative absorbance values (mean ± SD, n=3) with absorbance of the 

respective positive controls (sera of mice immunized with either II-1, TTP73 or I-9) set as 1. 

Binding to coated human IgG pool indicates that the murine antibodies bind to the conserved 

regions of antibodies. (C) Inhibition of anti-spacer autoantibody binding to rhADAMTS13 by anti-

idiotypic antibodies. A 1 in 2 dilution of murine anti-II-1 (red), anti-TTP73 (green) or anti-I-9 
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antibodies (orange) were pre-incubated with constant amounts of respectively anti-spacer 

autoantibody II-1, TTP73 and I-9 before addition to a rhADAMTS13 coated 96-well microtiter 

plate. Bound II-1 (red), TTP73 (green) and I-9 (orange) antibodies were detected using a mixture 

of anti-human IgG1-4-HRP. Data are expressed as % binding (mean ± SD, n=3) of anti-spacer 

autoantibodies II-1 (red), TTP73 (green) or I-9 (orange) to rhADAMTS13 in the presence of the 

competing murine anti-II-1 (17H9), anti-TTP73 (9G12) or anti-I-9 (7D10) antibody relative to the 

binding of II-1, TTP73 or I-9 in the absence of anti-idiotypic antibodies (dotted lines). (D) 

Overview of the binding sites of the generated anti-II-1, anti-TTP73 and anti-I-9 antibodies in II-1 

(red), TTP73 (green) and I-9 (orange) respectively. 

 

Figure 3: Anti-idiotypic antibodies and their binding to the anti-spacer idiotopes of II-1, TTP73 

and I-9 Binding of human anti-spacer autoantibodies (autoAbs) II-1 (red), TTP73 (green), I-9 

(orange) and of a pool of human IgG antibodies (negative control, black) to coated murine anti-

idiotypic antibody (Ab) 17H9 developed against II-1 (A), 9G12 developed against TTP73 (B) and 

7D10 developed against I-9 (C). Bound human anti-spacer autoantibodies II-1, TTP73 and I-9 

were detected using a mixture of anti-human IgG1-4-HRP. Data are expressed as relative 

absorbance values (mean ± SD, n=3) with absorbance of binding of II-1, TTP73 and I-9 at 1 

µg/mL to their respective anti-idiotypic antibodies set as 1. 

 

Figure 4: Total anti-ADAMTS13 IgG titers and anti-spacer II-1, TTP73 and I-9 idiotope 

concentrations in acute iTTP patients (A-C) Total anti-ADAMTS13 IgG titers (IU/mL) were 

determined via TECHNOZYM® with exception of 3 samples (ID 124, 128 and 130) which were 

determined via an in house developed anti-ADAMTS13 IgG ELISA (Supplemental Table 1, 

indicated by §). Anti-spacer II-1 (red square) (A), TTP73 (green square) (B) and I-9 (orange 

square) (C) idiotope concentrations were determined by adding patient plasma to coated 

murine anti-idiotypic antibody 17H9 (A), 9G12 (B) or 7D10 (C). Bound human autoantibodies 

were detected using a mixture of anti-human IgG1-4-HRP. A dilution series of human anti-spacer 

autoantibodies II-1 (A), TTP73 (B) or I-9 (C) was used as a calibration curve to determine 
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idiotope concentrations (ng/mL). Median is represented for total anti-ADAMTS13 IgG titers and 

II-1, TTP73 and I-9 idiotope concentrations. 

 

Figure 5: Anti-spacer idiotope profiles in acute iTTP patients Acute iTTP patients (n=151) were 

stratified according to the presence (+) or absence (-) of II-1, TTP73 and I-9 idiotopes as 

determined in Figure 4.  

 

Figure 6: Disease outcome and treatment according to the anti-spacer idiotope profiles 

Stratification of the 95 acute iTTP patients of the French Reference Center for TMA according to 

the 8 idiotope profiles for (A) the scoring system of Benhamou et al.
39

 (score < 3, white bars; 

score ≥ 3, black bars) and for (B) treatment with plasma exchange (PEX) with/without rituximab 

(white bars) or PEX with/without rituximab and additional treatments(s) (black bars). Three 

patients were excluded as they deceased before treatment initiation (Supplemental Table 2, 

indicated by †). 
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Supplemental methods 

Animals 

Animal experiments were approved by the Institutional animal Care and Use Committee of KU Leuven, 

Belgium (project number P055/2015). Mice were anesthetized using isoflurane/O2 before subcutaneous 

or intra-peritoneal injections and retro-orbital venipuncture. Serum was obtained from blood samples by 

1 hour incubation at 37°C and centrifugation at 13,400 rpm for 10 minutes. Serum samples were stored at 

-20°C. 

 

Cloned human anti-spacer autoantibodies 

Three cloned human anti-spacer autoantibodies with different epitopes and different inhibitory 

characteristics were used for the development of anti-idiotypic antibodies: anti-spacer autoantibody II-11, 

TTP732 and I-93. Anti-spacer autoantibody II-1 targets the R568-F592-R660-Y661-Y665 epitope in 

ADAMTS13’s spacer domain4 and is a strong inhibitor of ADAMTS13 activity1. Anti-spacer autoantibody I-

9 targets the R568-R660-Y661-Y665 epitope4 and is a weak inhibitor of ADAMTS13 activity1. Anti-spacer 

autoantibody TTP732 recognizes an epitope in ADAMTS13 that does not overlap with the epitope of anti-

spacer autoantibodies II-1 and I-9 (epitope at the amino acid level not known) and does not inhibit 

ADAMTS13 activity.  
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Immunization strategy and characterization of anti-II-1, anti-TTP73 and anti-I-9 antibodies 

Immunization strategy 

BALB/c mice (Janvier Labs, Le Genest-Saint-Isle, France) were immunized with cloned human anti-spacer 

autoantibodies II-11, TTP732, or I-93. Briefly, for each antibody, mice were injected subcutaneously with 10 

µg antibody (either II-1, TTP73, or I-9) in complete Freund’s adjuvant (BD, Franklin Lakes, NJ, USA) at day 

1 and intraperitoneally with 10 µg of antibody in incomplete Freund’s adjuvant (BD) at day 14. Mice 

immunized with vehicle only were used as a negative control. Twenty-one days after the first 

immunization, blood samples were taken to detect the presence of murine anti-human II-1, TTP73 and I-

9 antibodies in ELISA (see below). The immune response in mice was boosted at day 56 and 58 by injection 

of each antibody (either II-1, TTP73, or I-9). At day 59, the presence of murine anti-human II-1, TTP73 and 

I-9 antibodies in mouse sera was confirmed using ELISA (see below). At day 60, mice were sacrificed and 

their spleens were isolated. Spleen cells were fused with SP2/0 myeloma cells to generate hybridoma cells 

according to the method of Köhler and Milstein.5 Fourteen days after fusion, media of the cultured 

hybridoma cells was screened for the presence of either anti-II-1, anti-TTP73 or anti-I-9 antibodies using 

ELISA (see below). Hybridoma cells positive for anti-II-1, anti-TTP73 or anti-I-9 antibodies were further 

cultured and anti-II-1, anti-TTP73 or anti-I-9 antibodies were purified from the culture medium using 

protein G sepharose affinity chromatography (ÄKTA, GE Healthcare, Waukesha, WI, USA). Antibody 

concentration was determined by measuring absorbance at 280 nm and antibody purity was checked via 

sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and protein blue staining 

(Westburg, Leusden, The Netherlands). The binding of the purified anti-II-1, anti-TTP73 or anti-I-9 

antibodies to II-1, I-9 and TTP73 respectively was confirmed in ELISA (see below). ELISAs to identify the 

anti-idiotypic antibodies amongst the anti-II-1, anti-TTP73 or anti-I-9 antibodies are described below. The 

finally selected anti-idiotypic antibodies 17H9 (anti-II-1 antibody), 9G12 (anti-TTP73 antibody) and 7D10 

(anti-I-9 antibody) were subcloned as described elsewhere6 and purified as described above. 

 

ELISA to study the binding of murine anti-II-1, anti-TTP73 and anti-I-9 antibodies to coated human anti-

spacer autoantibodies II-1, TTP73 and I-9  

A 96-well microtiter plate was coated with either anti-spacer autoantibody II-1 (1.5 µg/mL), TTP73 (5 

µg/mL) or I-9 (1.5 µg/mL in carbonate/bicarbonate coating buffer; 50mM Na2CO3/NaHCO3, pH 9.6) and 

incubated overnight at 4°C. Next, the plate was washed and blocked with 3% milk powder in phosphate 

buffered saline (PBS) (blocking buffer). Either sera (start dilution 10%, v/v) from mice injected with anti-
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spacer autoantibody II-1, TTP73 or I-9 or media (start dilution, 17%, v/v) from the anti-II-1, anti-TTP73 and 

anti-I-9 producing hybridoma cells or purified murine anti-II-1, anti-TTP73 and anti-I-9 antibodies (start 

concentration 1 µg/mL) were added to the respectively II-1, TTP73 or I-9 coated 96-well microtiter plates 

and a 1 in 2 dilution series was made. For each plate, a serum sample (21 days post first immunization, 

1/500 start dilution) of mice immunized with either II-1, TTP73 or I-9 respectively was used as a positive 

control. Sera samples taken before immunization, naïve culture media or anti-glycoprotein Ib antibody 

6B47 were used as a negative control respectively. Bound anti-II-1, anti-TTP73, or anti-I-9 antibodies were 

detected using horse radish peroxidase (HRP)-labelled goat anti-mouse (GAM) antibodies (1/10,000; 

Jackson ImmunoResearch, West Grove, PA, USA). Colouring reaction was performed using ortho-

phenylenediamine dihydrochloride (OPD) and H2O2 and stopped with 4M sulfuric acid. Absorbance was 

measured at 490 nm. Data for the II-1, TTP73 or I-9 ELISA’s were expressed as relative absorbance values 

(mean ± SD, n=3) with absorbance of the respective positive controls (sera of mice immunized with either 

II-1, TTP73 or I-9) set as 1. 

 

ELISA to study the binding of murine anti-II-1, anti-TTP73 and anti-I-9 antibodies to a pool of human IgG 

antibodies 

Murine anti-II-1, anti-TTP73 and anti-I-9 antibodies targeting the conserved regions (Figure 1, grey) in 

human immunoglobulin G (IgG) antibodies were identified using ELISA. A pool of human IgG antibodies (5 

µg/mL in carbonate/bicarbonate coating buffer; Sigma-Aldrich, Saint-Louis, MO, USA) was coated on a 96-

well  microtiter plate. Plates were blocked with blocking buffer and murine anti-II-1, anti-TTP73 and anti-

I-9 antibodies were added (5 µg/mL) and a 1 in 2 dilution series was made. For each plate, a serum sample 

(21 days post first immunization, 1/500 start dilution) of mice immunized with either II-1, TTP73 or I-9 

respectively was used as a positive control. The anti-glycoprotein Ib antibody 6B47 was used as a negative 

control. Bound murine anti-II-1, anti-TTP73 and anti-I-9 antibodies were detected with GAM-HRP 

(1/10,000; Jackson ImmunoResearch). Colouring reaction was performed as described above and 

absorbance was measured at 490 nm. Data for the II-1, TTP73 or I-9 ELISA’s were expressed as relative 

absorbance values (mean ± SD, n=3) with absorbance of the respective positive controls (sera of mice 

immunized with either II-1, TTP73 or I-9) set as 1. 

 

ELISA to identify anti-II-1, anti-TTP73 and anti-I-9 antibodies that inhibit the binding of respectively anti-

spacer autoantibodies II-1, TTP73 or I-9 to ADAMTS13 
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ELISA to determine the effective concentration at half maximal binding (EC50) of each anti-spacer 

autoantibody to ADAMTS13 

The EC50 of the anti-spacer autoantibodies II-1, TTP73 and I-9 was determined via ELISA. A 96-well 

microtiter plate was coated with recombinant human (rh)ADAMTS13 (15nM in PBS) and incubated 

overnight at 4°C. After blocking, the anti-spacer autoantibodies II-1, TTP73 or I-9 were added (10 µg/mL) 

and a 1 in 2 dilution series was made. Bound anti-spacer autoantibodies II-1, TTP73 or I-9 were detected 

using HRP-labelled rabbit anti-human IgG and IgM antibodies (1/10,000; Jackson ImmunoResearch). 

Colouring reaction was performed as described above and absorbance was measured at 490 nm. Binding 

curves were fitted using specific binding with Hill slope to determine EC50 for each anti-spacer 

autoantibody (Graphpad Prism v5.03 software Inc., San Diego, CA, USA). The determined EC50 for anti-

spacer autoantibody II-1, TTP73 and I-9 are respectively 0.04, 0.85 and 0.04 µg/mL. 

ELISA to identify inhibiting anti-II-1, anti-TTP73 and anti-I-9 antibodies 

Human anti-spacer autoantibodies II-1, TTP73 or I-9 (constant final EC50) were pre-incubated with a 1 in 

2 dilution of murine anti-II-1, anti-TTP73 or anti-I-9 antibodies (final start concentration 10 µg/mL) 

respectively, in a pre-blocked plate. After 30 minutes, samples were transferred to a rhADAMTS13 (15nM 

in PBS) coated 96-well microtiter plate. Bound human anti-spacer autoantibodies II-1, TTP73 or I-9 were 

detected using a mixture of HRP-labelled anti-human IgG1-4 (IgG1: 1/20,000 and IgG2-4: 1/2,000; Sanquin, 

Amsterdam, The Netherlands). Colouring reaction was performed as described above and absorbance was 

measured at 490 nm. Binding (%) of anti-spacer autoantibodies II-1, TTP73 or I-9 to rhADAMTS13 in the 

presence of the competing murine anti-II-1 (17H9), anti-TTP73 (9G12) or anti-I-9 (7D10) antibody was 

expressed relative to binding of respectively II-1, TTP73 or I-9 with no competing antibody (buffer only) to 

rhADAMTS13 (set at 100% binding). Data were expressed as mean ± SD (n=3). 

 

ELISA to study the binding of the anti-idiotypic antibodies to the anti-spacer idiotopes of II-1, TTP73 and 

I-9 

Murine anti-idiotypic antibodies 17H9 (anti-II-1 antibody), 9G12 (anti-TTP73 antibody) and 7D10 (anti-I-9 

antibody) (5 µg/mL in carbonate/bicarbonate coating buffer) were coated on 96-well microtiter plates. 

After blocking, human anti-spacer autoantibodies II-1, TTP73 and I-9 were added at a start concentration 

of 1 µg/mL and 1 in 2 serial diluted. Addition of a pool of human Immunoglobulin G (IgG) antibodies (Sigma-

Aldrich Saint-Louis, MO, USA) was included as a negative control. Bound anti-spacer autoantibodies were 

detected by adding a mixture of HRP-labelled anti-human IgG1-4 antibodies (IgG1: 1/20,000 and IgG2-4: 

1/2,000; Sanquin). Colouring reaction was performed as described above and absorbance was measured 
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at 490 nm. Data were expressed as relative absorbance values (mean ± SD, n=3) with absorbance of binding 

of II-1, TTP73 and I-9 at 1 µg/mL to anti-idiotypic antibodies 17H9 (anti-II-1 antibody), 9G12 (anti-TTP73 

antibody) and 7D10 (anti-I-9 antibody) respectively set as 1.  

 

Patient samples 

Plasma samples were collected from 151 iTTP patients during acute phase before treatment. All patients 

presented with TTP-related clinical signs (thrombocytopenia, microangiopathic haemolytic anaemia), 

ADAMTS13 activity <10% measured via FRETS-VWF73 assay (Peptides International, Louisville, KY, USA)8 

with exception of 2 samples that were measured using the collagen binding assay (CBA, patient’s ID 128 

and 131, Supplemental Table 1 indicated by *)9 and anti-ADAMTS13 IgG titer >15 IU/mL measured via the 

TECHNOZYM ADAMTS13-INH ELISA® kit (Technoclone, Vienna, Austria) with exception of 3 samples that 

were measured using an in house anti-ADAMTS13 IgG ELISA (patient’s ID 124, 128 and 129, Supplemental 

Table 1 indicated by §). Patients were diagnosed with idiopathic iTTP (without any underlying cause). 

Twenty-one plasma samples were derived from the University Medical Center Utrecht (The Netherlands), 

35 samples from the Angelo Bianchi Bonomi Hemophilia and Thrombosis Center of Milan (Italy) and 95 

plasma samples from the French Reference Center for Thrombotic MicroAngiopathies (TMA) (France).  

Besides age, sex, total anti-ADAMTS13 IgG titer and ADAMTS13 activity, detailed information on 

laboratory, clinical and outcome parameters was available for the 95 iTTP patients enrolled in the French 

Reference Center for TMA (Supplemental Table 2). Laboratory parameters such as platelet count and 

lactate dehydrogenase (LDH) levels (except for 10 patients) were available (Supplemental Table 2). 

Assessment of cerebral involvement at time of diagnosis included clinical signs including headaches, 

confusion, aphasia, transient focal defects, convulsion, seizure, stroke and/or coma. Treatment consisted 

of either plasma exchange (PEX) with/without rituximab, or PEX with/without rituximab supplemented 

with additional treatment(s); steroids, other immunosuppressive drugs (e.g. cyclophosphamide, 

bortezomib) and/or caplacizumab and/or splenectomy. Patient’s outcome was investigated in terms of 

the pre-defined scoring system established by Benhamou et al. which includes age (years), LDH level 

(elevated LDH level: ≥ 2500 IU/L) and cerebral involvement.10 

 

ELISA to identify the presence of anti-spacer idiotope profiles in plasmas of acute iTTP patients using the 

newly developed anti-idiotypic antibodies 

Ninety-six-well microtiter plates were coated with either murine anti-idiotypic antibody 17H9 (anti-II-1 

antibody), 9G12 (anti-TTP73 antibody) or 7D10 (anti-I-9 antibody) (5 µg/mL in carbonate/bicarbonate 
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coating buffer) and incubated overnight at 4°C. After blocking, patient plasma (start dilution 10%, v/v) was 

added and 1 in 2 serial diluted. Bound patient antibodies (antibodies with the same idiotopes as the anti-

spacer autoantibodies II-1, TTP73, or I-9), were detected with HRP-labelled anti-human IgG1-4 (IgG1: 

1/20,000 and IgG2-4: 1/2,000; Sanquin). Colouring reaction was performed as described above and 

absorbance was measured at 490 nm. The human anti-spacer autoantibodies II-1, TTP73 or I-9 were used 

to set up a calibration curve. Anti-spacer autoantibody II-1 (0.25 µg/mL), TTP73 (1.25 µg/mL) or I-9 (0.25 

µg/mL) were spiked in a normal human plasma pool of 10 healthy donors (NHP; start dilution 10%, v/v) 

and 1 in 2 serial diluted. The equation derived after linear regression was used to determine respectively 

II-1, TTP73 or I-9 idiotope levels (ng/mL) in patient samples. As a negative control, NHP was added in each 

assay in triplicate and used to define the Lower Limit of Detection (LLoD, mean of negative control + 3*SD) 

for the II-1, TTP73 and I-9 idiotope screening ELISA (LLoDII-1 idiotope = 0.8 ng/mL, LLoDTT773 idiotope= 3.9 ng/mL 

and LLoDI-9 idiotope = 0.8 ng/mL). 

 

Statistical analysis 

Graphpad Prism v5.03 software (GraphPad Software Inc.) was used for statistical analysis. Continuous 

variables were described as mean and standard deviation (SD) and categorical variables as counts and 

percentages. Continuous (age) and categorical (categorized LDH levels, cerebral involvement, score system 

by Benhamou et al.10 and treatment) data were compared using ANOVA and chi square tests, respectively. 
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Supplemental Figure + Figure Legends 

 

Supplemental Figure 1: Separate parameters included in the score by Benhamou et al.10 according to the 

anti-spacer idiotope profiles Stratification of the 95 acute iTTP patients of the French Reference Center 

for TMA according to the 8 idiotope profiles for (A) age, (B) lactate dehydrogenase (LDH) levels (normal 

levels, white bars; elevated levels: ≥ 2500 IU/L, black bars) and (C) cerebral involvement (no cerebral 

involvement, black bars; cerebral involvement, white bars). Ten patients were excluded since no LDH 

measurement was performed (Supplemental Table 2, indicated by N/A). 
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Supplemental Tables + Table Legends 

Supplemental Table 1: ADAMTS13 activity, anti-ADAMTS13 IgG, anti-spacer II-1, anti-spacer TTP73 and 

anti-spacer I-9 idiotopes of iTTP patients during acute TTP Identity (ID), ADAMTS13 activity (%) using 

FRETS-VWF73 assay or collagen binding assay (*), anti-ADAMTS13 IgG titer (IU/mL) via TECHNOZYM® or 

in-house anti-ADAMTS13 IgG ELISA (§), anti-spacer II-1 idiotope, anti-spacer TTP73 idiotope and anti-

spacer I-9 idiotope levels (ng/mL) of 151 acute iTTP patients. ‘x’ indicates no detectable anti-spacer 

idiotopes. 

 

ID 
ADAMTS13 
activity (%) 

anti-ADAMTS13 
IgG (IU/mL) 

anti-spacer II-1 
idiotope (ng/mL) 

anti-spacer TTP73 
idiotope (ng/mL) 

anti-spacer I-9 
idiotope (ng/mL) 

1 < 5 56 75 x 70 

2 < 5 78 29 x x 

3 < 5 22 x x 121 

4 < 10 18 49 556 70 

5 < 5 100 49 x 91 

6 < 5 100 x x x 

7 < 5 100 x x x 

8 < 5 64 x x x 

9 < 5 100 x x x 

10 < 5 100 144 412 146 

11 < 5 100 x x x 

12 < 5 31 19 x 120 

13 < 5 100 x x 44 

14 < 5 57 x x x 

15 < 5 85 x x x 

16 < 5 100 141 x x 

17 < 5 100 x x x 

18 < 5 98 x x x 

19 < 5 29 x x x 

20 < 5 100 x x x 

21 < 5 100 x x x 

22 < 5 100 38 x 26 

23 < 5 57 x x 24 

24 < 5 29 x 116 x 

25 < 5 100 75 165 71 

26 < 5 90 x x x 

27 < 5 26 26 147 88 

28 < 5 59 37 392 38 

29 < 5 56 53 122 62 
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30 < 5 100 x x 125 

31 < 5 100 52 133 x 

32 < 5 100 124 439 83 

33 < 5 100 19 916 x 

34 < 5 100 23 x x 

35 < 5 100 x 394 x 

36 < 5 68 x x x 

37 < 5 58 191 333 x 

38 < 5 69 35 124 x 

39 < 5 69 x x 355 

40 < 5 32 5 x 22 

41 < 5 100 x x x 

42 < 5 45 31 x 34 

43 < 5 77 x 162 28 

44 < 5 100 x x 31 

45 < 5 52 x 156 16 

46 < 5 100 x x x 

47 < 5 100 x x 14 

48 < 5 100 69 87 96 

49 < 5 27 x x x 

50 < 5 67 29 x x 

51 < 5 38 22 x x 

52 < 5 80 x x x 

53 < 5 87 x x x 

54 < 5 100 x x x 

55 < 5 100 x x 7 

56 < 5 87 x x x 

57 < 5 100 74 109 635 

58 < 5 100 102 x 77 

59 < 5 100 18 x 59 

60 < 5 100 x x 63 

61 < 5 100 164 359 345 

62 < 5 44 28 196 118 

63 < 5 76 43 x 157 

64 < 5 100 119 174 132 

65 < 5 60 27 x 45 

66 < 10 24 x x x 

67 < 5 58 x x x 

68 < 5 18 x x 259 

69 < 5 100 x 746 38 

70 < 5 89 x x 83 

71 < 5 65 16 x 90 

72 < 5 36 23 x 45 
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73 < 5 44 x x 59 

74 < 5 100 x 114 35 

75 < 10 100 x x 40 

76 < 5 100 16 54 47 

77 < 5 24 x x 45 

78 < 10 18 29 51 75 

79 < 5 100 57 x 52 

80 < 5 100 x x x 

81 < 5 80 x x 113 

82 < 5 100 x 65 47 

83 < 5 100 x x x 

84 < 10 28 x x x 

85 < 5 100 x x 49 

86 < 5 100 x x x 

87 < 5 100 x x x 

88 < 5 100 x x x 

89 < 10 42 25 x x 

90 < 5 100 x x x 

91 < 5 90 x x x 

92 < 5 42 x 416 x 

93 < 5 100 56 x 66 

94 < 5 17 x x x 

95 < 5 45 68 x x 

96 < 10 100 x x x 

97 < 5 100 81 39 57 

98 < 5 100 x 20 x 

99 < 10 100 x x 46 

100 < 5 100 x x x 

101 < 5 100 x x 16 

102 < 5 100 79 259 387 

103 < 10 100 x x x 

104 < 5 77 45 x 40 

105 < 10 77 x x 22 

106 <10 76 x x x 

107 < 5 74 x x x 

108 < 10 65 x x x 

109 < 5 62 x x x 

110 < 5 60 40 572 x 

111 < 10 58 x x x 

112 < 5 58 x 338 x 

113 < 10 58 x x x 

114 < 5 54 x x 27 

115 < 5 50 13 293 43 
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116 < 5 100 59 403 50 

117 < 5 18 x x x 

118 < 5 100 x x x 

119 < 5 33 x x x 

120 < 5 16 x x 54 

121 < 5 100 x x x 

122 < 10 26 x 388 x 

123 < 5 100 x x x 

124 < 5 39§ x x x 

125 < 5 100 x x x 

126 < 5 42 x x x 

127 < 5 92 41 x x 

128 < 6* 11§ x 593 781 

129 < 5 3.4§ x x x 

130 < 5 86 22 153 x 

131 < 6* 100 x x x 

132 < 5 68 x x 47 

133 < 5 80 54 24 x 

134 < 5 36 x x x 

135 < 5 100 x x x 

136 < 5 100 x x x 

137 < 5 100 x x 40 

138 < 5 93 x x x 

139 < 5 100 61 x x 

140 < 5 35 x x x 

141 < 5 100 x x x 

142 < 5 100 x x x 

143 < 5 85 x x x 

144 < 5 76 x x x 

145 < 5 56 x x 171 

146 < 5 100 x x x 

147 < 5 100 x x x 

148 < 5 29 56 x x 

149 < 5 63 x x x 

150 < 5 54 114 x x 

151 < 5 31 101 x x 
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Supplemental Table 2: Detailed information on laboratory, clinical and outcome parameters of the 95 

iTTP patients of the French reference center. Identity (ID; patients 1-95 depicted here, are the same 

patients 1-95 in Table 1), sex (M: male, F: female), age (years), platelet count (x109/L), idiotope profile (1-

8), Benhamou score (< 3 (1-2) or ≥ 3 (3-4)), lactate dehydrogenase levels (LDH) level (IU/L), cerebral 

involvement and treatment. N/A: not assessed, † deceased, PEX: plasma exchange 

 

ID 
sex 

(M/F) 
age 

(years) 

platelet 
count 

(x109/L) 

idiotope 
profile 

Score by 
Benhamou 

et al.40 

LDH 
level 

(IU/L) 

cerebral 
involvement 

additional treatment 
to PEX 

1 F 66 24 5 ≥ 3 (3) < 2500 
yes (seizure, 
headaches, 
confusion) 

+ rituximab  
+ steroids 

2 F 41 8 1 < 3 (2) N/A 
yes 

(confusion) 
PEX only 

3 M 56 17 3 < 3 (2) < 2500 yes (stroke) + steroids 

4 F 65 132 7 ≥ 3 (3) < 2500 

yes 
(confusion, 
transient 

focal defect) 

+ rituximab  
+ steroids 

5 F 74 16 5 ≥ 3 (3) < 2500 yes (stroke) PEX only 

6 M 55 52 8 < 3 (1) < 2500 no 
+ rituximab  
+ steroids  

+ cyclophosphamide 

7 M 74 41 8 ≥ 3 (3) < 2500 
yes 

(confusion) 
+ rituximab  
+ steroids 

8 M 33 6 8 < 3 (1) < 2500 

yes 
(headaches, 
convulsion 

and seizure) 

+ rituximab  
+ steroids 

9 F 45 4 8 < 3 (2) ≥ 2500 no steroids only 

10 F 27 16 7 < 3 (1) < 2500 yes + steroids 

11 M 55 24 8 < 3 (1) N/A no no treatment† 

12 F 27 7 5 < 3 (0) < 2500 no + steroids 

13 M 68 23 3 ≥ 3 (3) < 2500 yes 
+ rituximab  
+ steroids 

14 F 25 13 8 < 3 (1) < 2500 
yes 

(headaches) 
+ rituximab  
+ steroids 

15 F 48 9 8 < 3 (2) < 2500 
yes 

(headaches) 
+ rituximab  
+ steroids 

16 F 31 18 1 < 3 (1) < 2500 
yes 

(confusion) 
PEX only 

17 F 37 32 8 < 3 (1) < 2500 
yes 

(headaches) 
PEX only 
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18 M 30 21 8 < 3 (0) < 2500 no 

+ rituximab  
+ steroids  

+ cyclophosphamide 
+ bortezomib 

19 F 65 14 8 ≥ 3 (3) < 2500 
yes 

(transient 
focal defect) 

+ steroids 

20 F 60 18 8 < 3 (2) ≥ 2500 no + rituximab 

21 M 48 26 8 < 3 (2) < 2500 
yes 

(confusion) 
+ rituximab 

22 F 56 27 5 < 3 (2) < 2500 
yes (stroke, 
blindness) 

+ steroids 

23 F 32 13 3 < 3 (1) < 2500 yes (aphasia) 
+ rituximab  
+ steroids 

24 F 23 12 2 < 3 (0) < 2500 no 
+ rituximab  
+ steroids 

25 M 38 16 7 < 3 (1) < 2500 
yes 

(headaches) 
+ caplacizumab 

26 F 26 7 8 < 3 (1) < 2500 
yes 

(headaches) 
+ rituximab  
+ steroids 

27 M 34 44 7 < 3 (1) < 2500 yes PEX only 

28 F 62 9 7 ≥ 3 (3) ≥ 2500 yes (aphasia) PEX only 

29 M 24 18 7 < 3 (0) < 2500 no PEX only 

30 F 38 17 3 < 3 (0) < 2500 no PEX only 

31 F 80 14 4 ≥ 3 (3) < 2500 
yes 

(confusion, 
convulsion) 

+ rituximab 

32 M 44 20 7 < 3 (2) < 2500 
yes 

(confusion, 
headaches) 

PEX only 

33 F 31 5 4 < 3 (0) < 2500 no + steroids 

34 F 71 20 1 ≥ 3 (3) < 2500 
yes 

(convulsion) 
PEX only 

35 F 31 9 2 < 3 (1) < 2500 
yes 

(headaches) 
+ rituximab 

36 F 27 20 8 < 3 (1) N/A 
yes 

(headaches) 
+ steroids 

37 F 28 5 4 < 3 (1) ≥ 2500 no + steroids 

38 F 68 5 4 ≥ 3 (3) < 2500 yes (seizure) 
+ rituximab  
+ steroids 

39 F 45 39 3 < 3 (2) < 2500 
yes 

(transient 
focal defect) 

+ rituximab  
+ steroids 

40 F 21 14 5 < 3 (2) ≥ 2500 
yes 

(confusion, 
headaches) 

+ steroids 

41 F 63 12 8 < 3 (2) < 2500 no steroids only 

42 M 35 7 5 < 3 (0) < 2500 no + rituximab 
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43 F 41 12 6 < 3 (2) N/A 
yes 

(headaches) 
+ steroids 

44 F 53 31 3 < 3 (1) N/A no + rituximab 

45 F 35 12 6 < 3 (2) ≥ 2500 

yes 
(headaches, 

visual 
disorders) 

+ steroids 

46 F 54 10 8 < 3 (2) < 2500 
yes 

(transient 
focal defect) 

+ steroids 

47 M 58 13 3 < 3 (2) < 2500 
yes 

(confusion) 
+ rituximab 

48 F 24   7 < 3 (1) < 2500 yes (aphasia) 
+ rituximab  
+ steroids 

49 F 40 10 8 < 3 (1) < 2500 
yes 

(confusion) 
+ rituximab  
+ steroids 

50 F 65 12 1 < 3 (2) < 2500 no 
+ rituximab  
+ steroids 

51 F 23 6 1 < 3 (1) < 2500 
yes 

(headaches) 
+ steroids 

52 M 20 9 8 < 3 (1) < 2500 
yes 

(headaches, 
convulsion) 

+ rituximab  
+ steroids 

53 M 52 4 8 < 3 (1) < 2500 no 

+ rituximab  
+ steroids  
+ vincristin  

+ splenectomy (anti-
vWF Abs) 

54 F 76 41 8 ≥ 3 (3) < 2500 yes (stroke) + rituximab 

55 F 53 12 3 ≥ 3 (3) ≥ 2500 
yes 

(confusion, 
convulsion) 

+ rituximab  
+ steroids 

56 F 70 30 8 ≥ 3 (3) < 2500 yes (stroke) PEX only 

57 M 41 18 7 < 3 (1) < 2500 no PEX only 

58 F 66 26 5 ≥ 3 (4) ≥ 2500 
yes 

(confusion, 
stroke) 

+ rituximab  
+ steroids 

59 F 25 12 5 < 3 (1) ≥ 2500 no + steroids 

60 M 32 10 3 < 3 (1) < 2500 yes 
+ rituximab  
+ steroids 

61 F 53 5 7 < 3 (2) < 2500 
yes (disorder 
of language) 

+ steroids 

62 F 41 13 7 < 3 (1) < 2500 no PEX only 

63 M 36 9 5 < 3 (0) N/A no PEX only 

64 F 34 8 7 < 3 (1) < 2500 yes 
+ rituximab  
+ steroids 

65 F 50 18 5 < 3 (2) < 2500 yes 
+ rituximab  
+ steroids 
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66 F 45 11 8 < 3 (2) < 2500 

yes 
(headaches, 

visual 
disorders) 

PEX only 

67 M 60 6 8 ≥ 3 (3) ≥ 2500 
yes 

(headaches) 
+ steroids 

68 F 79 82 3 ≥ 3 (3) < 2500 
yes 

(confusion, 
coma) 

+ rituximab 

69 M 65 35 6 ≥ 3 (3) < 2500 
yes (aphasia, 

confusion) 
+ steroids 

70 M 27 29 3 < 3 (1) < 2500 
yes 

(headaches) 
+ steroids 

71 F 45 6 5 < 3 (1) < 2500 no + steroids 

72 F 67 8 5 ≥ 3 (3) ≥ 2500 no 
+ rituximab  
+ steroids 

73 M 44 32 3 < 3 (1) N/A no PEX only 

74 F 37 13 6 < 3 (0) < 2500 no + steroids 

75 M 61 13 3 < 3 (2) < 2500 no PEX only 

76 M 42 10 7 ≥ 3 (3) < 2500 yes (stroke) 
+ rituximab  
+ steroids 

77 F 83 12 3 ≥ 3 (3) < 2500 yes (stroke) PEX only 

78 M 63 30 7 < 3 (2) N/A no PEX only 

79 F 64 4 5 ≥ 3 (3) < 2500 

yes 
(headaches, 

transient 
focal defect) 

+ rituximab  
+ steroids 

80 F 85 9 8 ≥ 3 (3) < 2500 
yes 

(transient 
focal defect) 

+ steroids 

81 M 83 9 3 ≥ 3 (3) < 2500 
yes 

(confusion) 
+ rituximab  
+ steroids 

82 M 61 11 6 < 3 (2) N/A no 

+ rituximab  
+ steroids  

+ cyclophosphamide  
+ splenectomy 

83 F 33 63 8 < 3 (1) < 2500 
yes 

(transient 
focal defect) 

steroids only 

84 M 40 34 8 < 3 (1) < 2500 
yes (cerebral 

lesions) 
+ steroids 

85 F 63 7 3 ≥ 3 (3) < 2500 yes (stroke) no treatment† 

86 F 40 8 8 < 3 (1) < 2500 
yes 

(headaches) 
+ steroids 

87 F 27 11 8 < 3 (0) < 2500 no + steroids 

88 F 21 11 8 < 3 (1) < 2500 

yes 
(headaches, 

transient 
focal defect) 

+ rituximab 
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89 F 31 55 1 < 3 (1) < 2500 
yes 

(headaches, 
seizure) 

+ rituximab  
+ steroids 

90 F 33 6 8 < 3 (1) < 2500 
yes 

(headaches) 
+ rituximab  
+ steroids 

91 F 46 5 8 ≥ 3 (3) ≥ 2500 
yes 

(headaches) 
+ rituximab  
+ steroids 

92 M 47 10 2 < 3 (2) N/A 
yes (seizure, 

aphasia, 
coma) 

no treatment† 

93 M 24 7 5 < 3 (1) < 2500 
yes 

(headaches) 
+ rituximab  
+ steroids 

94 M 44 7 8 < 3 (1) < 2500 no 
+ rituximab  
+ steroids 

95 F 27 8 1 < 3 (0) < 2500 no 
+ rituximab  
+ steroids 
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