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Key Points:6

• We examine the impact of horizontal variations in ice density on large-scale ice-7

sheet simulations.8

• A commonly used approximation, which adjusts the glacial thickness to account9

for density variations, has a number of shortcomings.10

• An approach which explicitly includes horizontal density variations could poten-11

tially lead to a 10% correction in estimated sea level rise.12
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Abstract13

Gravity-driven flow of large ice masses such as the Antarctic Ice Sheet (AIS) depends14

on both the geometry and the mass density of the ice sheet. The vertical density pro-15

file can be approximated as pure ice overlain by a firn layer of varying thickness, and for16

the AIS the firn thickness is not uncommonly 10 to 20% of the total thickness, leading17

to not insignificant variation in density. Nevertheless, in most vertically-integrated ice-18

flow models today the density is assumed constant, sometimes with an adjustment in thick-19

ness to compensate. In this study, we explore the treatment of horizontal density vari-20

ations (HDVs) within vertically-integrated ice-sheet models. We assess the relative mer-21

its and shortcomings of previously proposed approaches, and provide new formulations22

for including HDVs. We use perturbation analysis to derive analytical solutions that de-23

scribe the impact of density variations on ice flow for both grounded ice and floating ice24

shelves, which reveal significant qualitative differences between each of the proposed den-25

sity formulations. Furthermore, by modelling the transient evolution of a large sector26

of the West Antarctic Ice Sheet (WAIS), we quantify the potential impact of HDVs on27

estimated sea level change. For the domain we considered, we find that explicitly includ-28

ing the horizontal density gradients in the momentum and mass conservation equations29

leads to about a 10% correction in the estimated change in volume above flotation over30

40 years. We conclude that including horizontal density variations in flow modelling of31

the Antarctic Ice Sheet is important for accurate predictions of mass loss.32

Plain Language Summary33

Variation in the average ice-density across large ice sheets such as the Antarctic34

Ice Sheet will have an impact on the dynamics of the ice-flow. The question we wish to35

answer in this study is how significant this impact is and how best to model the density36

variations within large-scale numerical simulations. Variations in the average ice-sheet37

density come from layers of compactified snow which have a lower density than the un-38

derlying ice. Within the Antarctic Ice Sheet this compactified snow layer is approximately39

10 to 20% of the total thickness, which leads to not insignificant variation in the aver-40

age density. Nevertheless, in most numerical models that simulate the flow of large ice41

sheets, these variations are either ignored completely or approximated by an adjustment42

in the total ice-thickness. In all large-scale numerical models, there is a trade-off between43

computational complexity and an accurate depiction of the physical processes. We pro-44

pose several formulations for including density variations, and study the theoretical be-45

haviour of ice flows in each formulation. We find that numerical simulations of the West-46

ern Antarctic Ice Sheet over 40 years suggest that explicitly including density variations47

could potentially lead to a 10% correction in estimated sea level rise.48

1 Introduction49

Ice sheets typically comprise a core of meteoric ice, and an overlying layer of lower-50

density firn of variable thickness. This gives rise to spatial variation in the vertically-averaged51

density of the ice at each point on the surface. These density variations can be signif-52

icant. For example, in Figure 1 we have plotted the vertically-averaged density over the53

ice shelves fringing the Antarctic Ice Sheet, extracted from estimates of firn thickness.54

We see a reduction in density of at least 5% over wide areas, and over many ice-shelves55

such as George IV and towards the calving fronts of the Filchner-Ronne and Ross ice shelves56

the reduction in average density can be as much as 15%. For unconfined ice shelves the57

local spreading rate is proportional to the third power of the local density (when using58

typical values to describe the rheology of ice), which would suggest that in some cases59

density variations could lead to a 40% reduction in estimated spreading rates. For grounded60

ice sheets the velocity is similarly impacted by the local density. Nevertheless, despite61

potentially having significant impact on ice flow, horizontal variations in the ice density62
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Figure 1. Vertically-averaged density of the ice-shelves in Antarctica, with the grounded do-

main masked (data extracted from BedMachine Antarctica (Morlighem, 2020; Morlighem et al.,

2020)).

are generally not accounted for in most vertically-integrated large-scale ice sheet mod-63

els today.64

Here we provide the first systematic assessment of the impact of horizontal den-65

sity variations on the flow of large ice masses and present new formulations for their in-66

clusion in large-scale ice-flow models. We base our analysis on the shallow ice stream ap-67

proximation, a commonly used vertically-integrated formulation in ice-flow modelling for68

describing the ice flow of large ice masses where the ice thickness is small compared to69

the horizontal span. (This formulation is also referred to as the shallow-shelf approxi-70

mation or the shelfy approximation, and often abbreviated to SSA.) The SSA is deployed71

in many numerical simulation models of large ice masses. See, for example: the Pollard72

& DeConto Hybrid Ice Shelf Model (Pollard & DeConto, 2012), the MALI variable-resolution73

ice sheet model (Hoffman et al., 2018), PISM (Bueler & Brown, 2009), BISICLES (Cornford74

et al., 2013), f.ETISh (Pattyn, 2017), ISSM (Larour et al., 2012), and Úa (Gudmundsson,75

2020b). The treatment of density variations is rarely mentioned in the literature on these76

ice-sheet models. In the published model descriptions, the vertically-averaged density,77

ρ, enters the SSA equations of mass and momentum conservation, but in all models, with78

the exception of Úa, the spatial and temporal derivatives of ρ appear to be set to zero.79

If any correction for HDVs is included, it appears to be done through modification of80

ice thickness. In the ice-flow model Úa, a variable density field can be specified as an in-81

put to the model, and a correction to the momentum and mass conservation equations82

is included. We return later to a detailed description of the implementation in Úa.83

In all that follows, we consider variations in the vertically-averaged density as an84

input field to the ice-sheet model, similar to other input fields like the ice sheet bedrock85

topography or surface mass balance. We allow the density field to evolve in some of the86

models through advection, but we do not concern ourselves with how these variations87

in density arise or evolve in response to external climate forcings. The input density field88

can be extracted from datasets of ice and firn thicknesses, available for both the Green-89

land and the Antarctic Ice Sheets, e.g. the BedMachine Antarctica dataset (Morlighem,90

2020; Morlighem et al., 2020). Typically, the total thickness of the ice sheet is consid-91

ered to comprise an ice layer of fixed density ρice = 917 kg/m3, and a variable firn layer92

for which the firn air-content, δ, is estimated. The firn air-content can be considered to93
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be the vertical distance by which the firn needs to be compacted for it to have acquired94

the same density as ice. From the definition of δ it follows that it can be expressed as95

δ = h× (1− ρ/ρice), where h is the total thickness of the ice column. Under this def-96

inition, hice = h − δ is the ice-equivalent thickness, for which ρice × hice = ρ × h. See97

Appendix A for a more detailed description.98

A common approach to handle density variations in ice-flow models is to adjust the99

height of the glacier to this ice-equivalent thickness, while keeping the ice-density con-100

stant ρ = ρice. This preserves the total mass of the ice-column at each spatial coordi-101

nate and thus maintains hydrostatic equilibrium of the ice-shelves. We refer to this ap-102

proximation as the density-to-thickness (D2T) adjustment method. The apparent ad-103

vantage of this approach is that, as a result, all spatial density gradients in the original104

data sets disappear, and so no modification of the standard form to the SSA equations105

is required. However, this commonly used approach may not capture the true impact106

of density variations acting within the mass and momentum conservation equations. It107

is important to realize that the D2T adjustment results in modification to all terms in-108

volving ice thickness in the SSA equations, including several terms that do not involve109

the density. Furthermore, once the ice thickness has been modified in this manner in the110

initial model setup, the density variations are effectively advected with the ice over time.111

In what follows, we analyse the ice flow under the D2T adjustment and propose a num-112

ber of alternative formulations for incorporating HDVs into large-scale ice-flow models.113

In particular, we examine the magnitude of the difference, or the error, when the vari-114

ations in density are folded into the ice thickness distribution, as done in the D2T ad-115

justment, compared to introducing the spatial gradients in density directly as additional116

terms in the SSA equations, and solving the resulting augmented system of flow equa-117

tions.118

We start by presenting the field equations governing ice-flow in the presence of a119

spatially varying density field within the SSA in section 2, with the derivation detailed120

in Appendix A. In section 3, we discuss various approaches for including HDVs in vertically-121

integrated ice-flow models, including the D2T adjustment approach outlined above. One122

of the first questions to consider is the general importance of horizontal density varia-123

tions, and whether they can reasonably be ignored. To this end, in section 4 we start by124

looking at typical spatial scales governing large-scale ice flow to assess the relative size125

of different terms in the momentum equations, particularly those terms containing the126

spatial gradients in density.127

The bulk of this paper is dedicated to comparing the behaviour of the different den-128

sity approaches within a linearised version of the field equations. This analytical approach129

focuses on the response to small perturbations in the density field, closely following the130

approach of Gudmundsson (2008). In sections 5 and 6, we derive the transfer functions131

for induced perturbations in the glacial thickness and surface velocity relative to two steady-132

state reference solutions: that of a grounded ice sheet in section 5, and that of a float-133

ing ice shelf in section 6. The transfer functions describe the response of the primary fields134

to density perturbations at different spatial wavelengths. The application to a floating135

ice shelf is complicated by the fact that the steady-state thickness and velocity fields are136

spatially varying, and here we use the approximation proposed by Ng et al. (2018) for137

perturbation analysis in the presence of a spatially varying background field. We derive138

sixteen transfer functions in total: for the surface topography and horizontal velocity field139

within each of the four density formulations, applied to each of the two reference states.140

If the reader is less interested in the technical details of these derivations, they may choose141

to skip forward to section 7, where we summarise the derived transfer functions, although142

we do recommend paying attention to the details of the D2T formulation in section 5.5.143

In section 7 we compare the different transfer functions and use them to examine the be-144

haviour of the ice flow in a few simple simulations.145
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Finally, in section 8, we look at a specific example of the impact of the different146

density formulations on transient simulations of the Western Antarctic ice sheet within147

the shallow ice-model Úa. This is applied to a limited set of the different density formu-148

lations, restricted to those that can be applied to large-scale numerical simulations within149

the current set of ice-flow models. We conclude in section 9 with a summary of the im-150

portant findings of this study.151

2 The SSA Field Equations with Horizontal Density Variations152

The equations of motion describing the flow of isothermal masses are governed by153

the principles of conservation of mass and momentum. In this study, we restrict our anal-154

ysis to ice flows that can be described by the shallow ice stream approximation (SSA),155

where the ice thickness is small compared to the horizontal span. The SSA equations have156

been derived numerous times in the literature with the first derivation being, to our knowl-157

edge, by MacAyeal (1989). Baral et al. (2001) provides a useful overview of asymptotic158

theories of large-scale glacier flow. In the presence of horizontal density variation, we show159

how the SSA mass and momentum equations need to be modified in Appendix A. We160

have broadly followed the derivation given in Gudmundsson (2020a), but made various161

modifications and extensions to account for a variable density field, resulting in several162

additional terms to the momentum equations. The results are summarised below. In this163

derivation, we make the simplifying assumption that the density is constant with depth,164

and equal to the vertically averaged density at each spatial point (x, y). Without this165

assumption, analytical solutions to the vertically-integrated field equations are not pos-166

sible, and would instead require numerical integration in the z-dimension. In Appendix167

B we discuss this assumption and its potential short-comings in a bit more detail.168

The SSA momentum-conservation equations, in the presence of a horizontally vary-169

ing density field are170

∂x

(
4hη∂xu+ 2hη∂yv +

2hη

ρ

Dρ

Dt

)
171

+∂y(hη(∂xv + ∂yu))− tbx = ρgh (∂xs cosα− sinα) +
1

2
h2g∂xρ cosα172

∂y

(
4hη∂yv + 2hη∂xu+

2hη

ρ

Dρ

Dt

)
173

+∂x(hη(∂xv + ∂yu))− tby = ρgh∂ys cosα+
1

2
h2g∂yρ cosα (1)174

in a tilted coordinate system aligned to the bed topography, where α is the angle of the175

coordinate system to the horizontal. Allowing the density field to vary has introduced176

two new contributions to these equations. On the left hand side, we have a term pro-177

portional to the material derivative of the density field, Dρ/Dt. This additional term178

represents momentum transfer between regions of low and high density. On the right hand179

side of the equations we have an additional driving term which scales as the horizontal180

gradient of the density. In this notation: η is the vertically-integrated effective viscos-181

ity; u, v are the horizontal velocities in the x, y directions respectively; tbx, tby are the182

horizontal components of the basal traction vector; s is the location of the upper glacial183

surface; and g is the acceleration due to gravity. We use the short-hand ∂x ≡ ∂
∂x , and184

the material derivative is defined as185

Dρ

Dt
≡ ∂tρ+ v · ∇ρ,186

where v = (u, v, w) is the velocity vector of the ice-flow. All variables are defined through-187

out the text and summarised in the Notation section.188
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In three-dimensions, the generalised form of the mass-conservation equation which189

allows for density variation in the ice sheet is190

Dρ

Dt
+ ρ∇ · v = 0 (2)191

In the SSA, the vertically-integrated form of this equation is192

ρ∂th+∇xy · qxy + h∂tρ = ρa (3)193

where the horizontal mass-flux qxy ≡
∫ s
b
ρvxy dz; and the total accumulation, a = as+194

ab, is the sum of the surface accumulation and basal melt rates.195

In addition to these field equations, the modification to the mass-conservation equa-196

tion also impacts a few other expressions used inside shallow ice-flow models. Firstly,197

the boundary conditions at the calving front become198

2ηh

(
2∂xu+ ∂yv +

1

ρ

Dρ

Dt

)
nx + ηh (∂xv + ∂yu)ny =

1

2
g
(
ρh2 − ρwd2

)
nx199

2ηh

(
2∂yv + ∂xu+

1

ρ

Dρ

Dt

)
ny + ηh (∂xv + ∂yu)nx =

1

2
g
(
ρh2 − ρwd2

)
ny (4)200

where nx and ny are the components of the unit normal pointing horizontally outwards201

from the ice front; ρw is the density of the ocean; and the draft at the ice-front d ≡ S−202

b where S is the surface of the ocean. Secondly, when calculating the effective viscosity203

in Glen’s flow law, one should use204

ε̇2zz =

(
ε̇xx + ε̇yy +

1

ρ

Dρ

Dt

)2

(5)205

instead of ε̇zz = −(ε̇xx + ε̇yy), where ε̇ij are the strain rates.206

3 Approaches to include Horizontal Density Variations in the SSA207

There are a number of approaches we could take to handle the additional terms208

in the modified SSA equations when modelling ice-flow. The simplest would be to ig-209

nore the density variation completely and set the material derivative and spatial gradi-210

ents of the density field to zero. An alternative, which is commonly used, is to treat the211

density as constant and adjust the input ice-thickness by the firn air-content, as discussed212

in section 1. We refer to this as the Density-to-Thickness Adjustment [D2T] for-213

mulation. In this approximation, we set ρ = ρice and h = hice in all the field equa-214

tions listed in section 2. Derivative terms in ρ will implicitly be introduced by the δ ad-215

justment to the derivative terms in h.216

A more realistic formulation is implemented in the shallow-ice model Úa (Gudmundsson,217

2020b), which allows a spatially-variable density field as one of the inputs. We refer to218

this as the Density Variations - Body Force only [DV-BF] formulation. Additional219

terms arising from the horizontal gradient of the density are included in the momentum220

and mass–conservation equations. It assumes a static density distribution, i.e. ∂tρ = 0.221

According to Sorge’s law (Bader, 1954), which was based on observations of the density222

distribution in central Greenland, the ice density at a given depth generally does not change223

significantly over time. The compactification of snow into ice leads to a static density224

distribution, with the arrival of new low-density firn approximately balanced by the com-225

pactification and advection of existing material. However, this DV-BF formulation ne-226

glects the term in Dρ/Dt on the left hand side of the momentum equation (and simi-227

larly does not modify the calving front boundary conditions nor the effective viscosity),228

which only leaves the correction to the body-force term on the right hand side of the mo-229

mentum equation. There is a scaling argument which may justify that this is the more230
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significant correction term for real ice-flows, which we discuss in section 4. The correc-231

tion to the mass-conservation equation is implicit in the horizontal density variation of232

the mass-flux.233

We propose two further formulations for incorporating horizontal density variations234

into ice-flow models. The first is a fuller implementation of the DV-BF formulation which235

does not neglect the Dρ/Dt terms. We refer to this as the Density Variations [DV]236

formulation. It assumes a static density distribution, thus setting ∂tρ = 0 and Dρ/Dt =237

v·∇ρ inside all the field equations in section 2. This leads to correction terms on both238

the left and right hand side of the momentum equations. However, this formulation does239

cause some conceptual difficulties as the left hand side of the momentum equation is no240

longer frame-invariant, which is inevitable since in order to assume ∂tρ ≈ 0 we must241

be specifying a particular reference frame.242

This lack of frame-invariance motivates our second proposal, which is to allow the243

temporal evolution of the vertically-integrated density field. We refer to this as the Den-244

sity Variations Advected [DVA] formulation. We ignore the overhead snow accu-245

mulation and compactification at depth, and assume that the initial density distribution246

advects with the ice, such that the flow is density-preserving. In this limit we set Dρ/Dt =247

0 in all the field equations listed in section 2, and the density evolves according to ∂tρ =248

−v·∇ρ. The DVA formulation is not a particularly realistic scenario, since it is the over-249

head snow accumulation and compacitifaction which gives rise to the HDVs in the first250

place. However, we find the behaviour in the DVA formulation a helpful comparison for251

some of the behaviour observed in the D2T formulation, and it represents the opposing252

limit to the case of a static density distribution in the DV formulation. A full treatment253

that includes a detailed firn compactification model to estimate the evolution of the vertically-254

integrated density at each spatial coordinate is best kept to an external atmospheric model255

that updates a static density distribution over time. We discuss this further in the con-256

clusions.257

We consider each of these four approaches for including horizontal density varia-258

tions (DV, DV-BF, DVA and D2T) independently in the perturbation analysis that fol-259

lows in sections 5 and 6, and compare the results of the different approaches in 7. In the260

numerical simulations of the Antarctic Ice Sheet in section 8, we are obliged to restrict261

our analysis to comparing the DV-BF and D2T adjustment methods, which are the only262

two formulations that are enabled for large-scale simulations in current ice-flow models.263

4 Significance of the Additional Density Variation Terms264

One of the first questions to consider is the relative magnitude of the additional265

terms in the SSA equations that arise in the presence of a varying density field, as de-266

rived in section 2, regardless of the specific density formulation used.267

We start with the modified momentum-conservation equation, and look at the typ-268

ical scales for the different variables, indicated by [·]. Restricted to one-dimensional flow,269

and assuming that time scales advectively, i.e. Dρ/Dt scales as v·∇ρ, Equation (1) can270

be expressed in terms of the typical scales as271

4[η][h][u]

[x]2

(
[∆u]

[u]
+

1

2

[∆ρ]

[ρ]

)
− [tbx] =

[ρ][g][h]2

[x]

(
[∆s]

[h]
+

1

2

[∆ρ]

[ρ]

)
− [ρ][g][h][α]272

where [α] = [h]/[x] � 1 in the shallow ice stream approximation. The scale [∆ρ] rep-273

resents the variation in density over the horizontal length scale [x]. The additional terms274

on both the right and left hand sides of the momentum equation scale as [∆ρ]/[ρ]. The275

same is true of the additional terms in the D2T adjustment method, which scale as [δ]/[h] =276

[∆ρ]/[ρ]. A reasonable estimate from Figure 1 is that the average density of an ice sheet277

can range from 917 kg m−3 to approximately 830 kg m−3, such that [∆ρ]/[ρ] ∼ 0.1. Stan-278

dard scaling arguments would argue that [∆u]/[u] ∼ 1 and [∆s]/[h] ∼ 1, which would279
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imply that the density terms on both sides of the momentum equation contribute equally,280

with a magnitude of approximately 10%.281

The true relative contribution of the additional density terms will depend on the282

glacier topography. For example with grounded ice caps, which typically exhibit larger283

variations in [∆s], the basal drag tbx tends to dominate on the left hand side of the mo-284

mentum equation. Under this scenario, we might expect the density correction term on285

the left hand side to be negligible, and only the correction to the body-force term to be286

significant. For fast flowing ice streams and floating ice-shelves, the basal drag tends to287

zero. However the surface slope, [∆s], also tends to zero, at which point the density cor-288

rection in the body-force term may become quite significant. In both scenarios, this is289

suggestive that the density correction term within the driving force on the right hand290

side of the momentum equation is more significant than that on the left, and should be291

prioritised in the implementation of any horizontal density formulation. This is consis-292

tent with the DV-BF formulation which prioritises the body-force term, as opposed to293

the more complete DV formulation which includes both terms.294

The additional density terms in both the mass-conservation equation and the calv-295

ing front boundary conditions, in Equations (3) and (4), can also be seen to contribute296

approximately 10%. The contribution to the effective viscosity from Equation (5) is less297

obvious. It can be shown that it ultimately introduces a multiplicative factor to the ef-298

fective viscosity, which scales as
(

1− n−1
2n

[∆ρ]
[ρ]

)
. Typical values for the exponent in Glen’s299

flow law, n = 3, would suggest that this correction is less significant, but not negligi-300

ble, at 3%.301

5 Perturbation Analysis: The Case of a Grounded Ice-Sheet302

We wish to understand the impact on the ice flow of including the additional terms303

arising from horizontal density variations. In this section and the next (section 6) we de-304

rive the transfer functions describing the first-order response to small perturbations in305

the glacial density. We follow closely the technique presented in Gudmundsson (2008),306

and derive transfer functions for the induced perturbations in the surface s(x, t) and hor-307

izontal velocity u(x, t), restricted to the one-dimensional case for simplicity. In this sec-308

tion we focus on the reference state of a grounded ice sheet, and derive the response to309

small perturbations about this reference solution. We do this separately for each of the310

four density formulations (DV, DV-BF, DVA, D2T) that were described in section 3. If311

the reader is less interested in the mathematical details of these derivations, they can312

skip forward to section 7 which summarises and analyses the different transfer functions,313

although we do recommend paying attention to the derivation in the D2T formulation314

in section 5.5.315

We start by describing the reference solution for the grounded ice-sheet in section316

5.1. In section 5.2 we go through the steps to derive the transfer functions in the DV for-317

mulation in detail. This illustrates the technique, and then for each subsequent deriva-318

tion (in sections 5.3 to 5.5) we only include steps which require a different treatment.319

In outline, the steps in each derivation are to take the relevant momentum and mass con-320

servation equations, together with the kinematic boundary conditions, to arrive at a sys-321

tem of differential equations which relate small perturbations in the density and surface322

fields. Taking the Fourier and Laplace transforms turns this into a linearised system of323

equations, which can be solved to arrive at the transfer functions. These describe the324

phase and amplitude of surface field perturbations in response to a prescribed density325

perturbation as a function of frequency and time.326

–8–
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5.1 Reference Solution327

In the case of a grounded ice sheet, the basal stress can be described by Weertman’s328

sliding law:329

tbx = c−1/m‖vb‖1/m−1vb330

where vb is the basal velocity and c is the slipperiness along the bed. In the SSA, the331

horizontal velocities are constant with depth and so in one-dimension tbx = (u/c)1/m.332

In this perturbation analysis, we assume that the viscosity is linear such that η = const.333

Taking the vertically-integrated SSA momentum equations presented in Equation (1),334

and restricting to a one-dimensional flow-line for simplicity, we find335

∂x

(
4hη∂xu+

2hη

ρ

Dρ

Dt

)
−
(u
c

)1/m

= ρgh (∂xs cosα− sinα) +
1

2
gh2∂xρ cosα (6)336

We consider an idealised scenario of flow down a uniformly inclined slab of constant thick-337

ness, which extends infinitely in the x and y dimensions. To find the steady-state ref-338

erence solution, we look for solutions which are independent of x. This can be solved triv-339

ially to find340

u = c(ρgh sinα)m341

which is our reference solution for the flow.342

5.2 Perturbations within the DV formulation343

Our first example is to apply a small density perturbation to the ice sheet, and as-344

sume the ice dynamics can be described by a static density distribution as specified by345

the Density Variations [DV] formulation.346

Within this perturbation analysis, we apply a small perturbation to the ice den-347

sity about a constant reference value:348

ρ(x, t) = ρ̄+ ∆ρ(x, t) (7)349

while holding other parameters constant, such as the viscosity η and basal slipperiness350

c. This induces small perturbations in the other variables:351

h(x, t) = h̄(x) + ∆h(x, t)352

s(x, t) = s̄(x) + ∆s(x, t)353

u(x, t) = ū(x) + ∆u(x, t)354

w(x, z, t) = w̄(x, z) + ∆w(x, z, t) (8)355

In the case of a grounded ice sheet, the reference solution is independent of x and so ū,356

h̄ and s̄ are constants, while w̄ is a function of z only. The lower surface remains unper-357

turbed, such that h̄ = s̄− b̄ and ∆s = ∆h. In the DV formulation, the density distri-358

bution is held static, so we assume the perturbation in time is a step function H(t) with359

zero perturbation before t = 0, and a fixed contribution which varies with x thereafter:360

∆ρ(x, t) = H(t)∆ρ(x).361

In the DV formulation, the momentum and mass conservation equations describ-362

ing the ice flow, Equations (6) and (2) respectively, become363

∂x

(
4hη∂xu+

2hη

ρ
u∂xρ

)
−
(u
c

)1/m

= ρgh (∂xs cosα− sinα) +
1

2
h2g∂xρ cosα364

u∂xρ+ ρ(∂xu+ ∂zw) = 0365

Applying the perturbations of Equations (7) and (8), the momentum equation to zeroth-366

order is identically equal to the reference solution:367

ū = c
(
ρ̄gh̄ sinα

)m
(9)368

–9–
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while to first-order in the perturbations, the equations of motion are369

4h̄η∂2
xx∆u+

2ηh̄ū

ρ̄
H(t)∂2

xx∆ρ− γ∆u = τd∂x∆s cotα− τd
h̄

∆s370

−τdH(t)
∆ρ

ρ̄
+

1

2
τdh̄H(t)

∂x∆ρ

ρ̄
cotα371

ūH(t)∂x∆ρ+ ρ̄(∂x∆u+ ∂z∆w) = 0 (10)372

where we have defined373

τd ≡ ρ̄gh̄ sinα374

γ ≡
( ū
c

)1/m 1

mū
= τ1−m

d

1

mc
375

and the final equality comes from the zeroth-order solution.376

In addition to the equations of motion, we require the kinematic boundary condi-377

tions to find analytical solutions to these perturbations. At the upper and lower surfaces378

respectively,379

∂ts+ u∂xs− w|s = as380

∂tb+ u∂xb− w|b = −ab (11)381

where all variables apart from the vertical velocity w are independent of z in the SSA.382

We set the accumulation rates as = ab = 0 in the case of a grounded ice sheet, so that383

the reference solution is time-invariant. We need to be careful when considering the per-384

turbation response within the boundary conditions, to separate out the perturbation in385

a function due to variation with the location of the boundary surface ∆s, and the per-386

turbation in the function due to other factors. Consider a function f = f(z, φ), which387

varies with depth, z, as well as other factors which we have aggregated together as φ.388

Using a Taylor expansion to first order,389

f(z, φ) = f(z̄, φ̄) + ∂zf(z̄, φ̄)∆z + ∂φf(z̄, φ̄)∆φ390

= f̄(z̄) + ∂z f̄(z̄)∆z + ∆f(z̄)391

where for the sake of brevity, variation due to the other factors φ has been aggregated392

into ∆f . We apply this technique to the horizontal (u) and vertical (w) velocities at the393

boundary. We find that to zeroth order,394

w̄|s̄ = w̄|b̄ = 0395

while to first order,396

∂t∆s+ ū|s̄∂x∆s−∆w|s̄ = 0397

∆w|b̄ = 0 (12)398

where the term in ∂zw̄|s̄ has vanished due to the zeroth-order solution.399

To solve this system of first-order equations, we apply Fourier and Laplace trans-400

forms in the x and t dimensions respectively, defined as401

f(k) =

∫ +∞

−∞
f(x)eikxdx402

f(r) =

∫ +∞

0+

f(t)e−rtdt (13)403

where a dependence on the spatial coordinate x is transformed into a dependence on the404

wavenumber k = 2π/λ in the Fourier domain, and the time coordinate is transformed405

–10–
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into a dependence on the complex parameter r in the Laplace domain. We apply the trans-406

forms to the perturbations: ∆ρ, ∆s, ∆u and ∆w. These perturbations are functions of407

(x, t). In the F.T. and L.T. space they become functions of (k, r). Under these trans-408

forms, we have the following identities:409

F.T. (f ′(x)) = −ikF.T. (f(x))410

F.T. (f ′′(x)) = −k2F.T. (f(x))411

L.T. (f ′(t)) = rL.T. (f(t))− f(t = 0−)412

L.T. (H(t)) = r−1
413

The Fourier and Laplace transforms of the first-order equations of motion and bound-414

ary conditions in Equations (10) and (12) give rise to the following linearised system of415

equations:416

ξ∆u = ikτd∆s cotα+
τd
h̄

∆s+

(
τd + ik

τdh̄

2
cotα− 2ηh̄ūk2

)
∆ρ

ρ̄r
(14)417

∂z∆w = ik∆u+ ikūr−1∆ρ/ρ̄ (15)418

∆w|s̄ = r∆s− ikū∆s (16)419

∆w|b̄ = 0 (17)420

where we have defined421

ξ ≡ γ + 4h̄k2η422

and we have chosen to set ∆s(t = 0−) = 0. In the SSA equations, only ∆w is a func-423

tion of z, and so we can integrate Equation (15) between the lower and upper surfaces424

and apply the boundary conditions given by Equations (16) and (17), to give425

(r − ikū)∆s = ikh̄∆u+ ikh̄ūr−1∆ρ/ρ̄426

We eliminate ∆u by inserting Equation (14), and collect terms in ∆ρ and ∆s to arrive427

at the transfer function428

Tsρ(k, r) ≡
∆s(k, r)

∆ρ(k)
=
h̄
(
p+ 1

2 t
−1
r − ikūζ

)
ρ̄r (r − p)

429

where, following the definitions in Gudmundsson (2008), we have defined430

p ≡ it−1
p − t−1

r431

t−1
p ≡ k

(
ū+ τdξ

−1
)

432

t−1
r ≡ ξ−1k2τdh̄ cotα433

in addition to434

ζ ≡ 2ηh̄k2ξ−1 .435

We convert Tsρ(k, r) back into the time dimension through the inverse Laplace trans-436

form:437

f(t) =
1

2πi

∫ γ+i∞

γ−i∞
ertf(r)dr438

Note in this context γ is an arbitrary real number so that the contour path of integra-439

tion is in the region of convergence of f(r), not to be confused with the earlier param-440

eter γ in the field equations. The function Tsρ(k, r) has two poles: one at r = 0 and441

one at r = p. The quantities in the definition of tr are always positive, and so the pole442

defined by r = p will reside in the left half of the complex plane. We integrate over the443

left half of the complex plane, enclosing both poles, such that the contour integral is equal444

to 2πi times the sum of the residuals. The function Tsρ(k, r) → 0 as |r| → ∞, and so445

–11–
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by Jordan’s Lemma we can ignore the arc segment of the contour integral that expands446

to infinity. Thus,447

Tsρ(k, t) ≡
∆s(k, t)

∆ρ(k)
=
h̄
(
p+ 1

2 t
−1
r − ikūζ

)
ρ̄p

(
ept − 1

)
(18)448

This transfer function has two components: an exponential term ept which decays over449

time (since p resides in the left half of the complex plane), and a steady-state compo-450

nent which means a perturbation will persist in the glacial surface. Numerical integra-451

tion is required to transform the response in the surface from the frequency domain into452

the spatial domain, with the inverse Fourier transform:453

∆s(x, t) =

∫ ∞
−∞

Tsρ(k, t)∆ρ(k)e−ikxdk (19)454

where ∆ρ(k) is the Fourier transform of the small perturbation in the density field ∆ρ(x).455

We can follow a similar procedure to find the response of the horizontal velocity456

to perturbations in the density. In the Laplace domain,457

∆u(k, r) =

(
(r − ikū)

(
1
2 t
−1
r − ikūζ

)
+ r(p− ikū)

r(r − p)

)
∆ρ(k)

ikρ̄
458

and taking the inverse Laplace transform, the transfer function for the horizontal veloc-459

ity in the time-domain is460

Tuρ(k, t) ≡
∆u(k, t)

∆ρ(k)
=
ū
(

1
2 t
−1
r − ikūζ

)
ρ̄p

+
(p− ikū)

(
p+ 1

2 t
−1
r − ikūζ

)
ikρ̄p

ept (20)461

5.3 Perturbations within the DV-BF formulation462

We can follow exactly the same procedure to find the transfer functions when the463

ice-flow is described by the Density Variations - Body Force only [DV-BF] formulation,464

which just requires us to neglect the term in u∂xρ on the left hand side of the momen-465

tum equation. In the DV-BF formulation, the momentum and mass conservation equa-466

tions describing the ice flow, Equations (6) and (2) respectively, become467

∂x (4hη∂xu)−
(u
c

)1/m

= ρgh (∂xs cosα− sinα) +
1

2
h2g∂xρ cosα468

u∂xρ+ ρ(∂xu+ ∂zw) = 0469

and the derived transfer functions are470

Tsρ(k, t) ≡ ∆s(k, t)

∆ρ(k)
=
h̄
(
p+ 1

2 t
−1
r

)
ρ̄p

(
ept − 1

)
(21)471

Tuρ(k, t) ≡ ∆u(k, t)

∆ρ(k)
=
ū
(

1
2 t
−1
r

)
ρ̄p

+
(p− ikū)

(
p+ 1

2 t
−1
r

)
ikρ̄p

ept (22)472

5.4 Perturbations within the DVA formulation473

In this next example, we assume the ice dynamics can be described by an initial474

density distribution which then advects over time as specified by the Density Variations475

Advected [DVA] formulation. We follow a similar procedure to that detailed in section476

5.2.477

In the DVA formulation, the momentum and mass conservation equations describ-478

ing the ice flow, Equations (6) and (2) respectively, become479

∂x (4hη∂xu)−
(u
c

)1/m

= ρgh (∂xs cosα− sinα) +
1

2
h2g∂xρ cosα480

∂xu+ ∂zw = 0481

–12–
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together with the equation of motion for the density evolution,482

Dρ

Dt
≡ ∂tρ+ u∂xρ = 0 (23)483

while the kinematic boundary conditions are the same as before in Equation (12).484

We apply a perturbation to the density field which can evolve over time, as described485

in Equations (7) and (8), with ∆ρ(x, t < 0) = 0. Keeping terms to first-order in the486

perturbations, and applying the Fourier and Laplace transforms defined in Equation (13),487

we arrive at the following linearised system of equations:488

ξ∆u = ikτd∆s cotα+
τd
h̄

∆s+

(
τd + ik

τdh̄

2
cotα

)
∆ρ

ρ̄
489

∂z∆w = ik∆u490

r∆ρ−∆ρ0(k) = ikū∆ρ491

∆w|s̄ = r∆s− ikū∆s492

∆w|b̄ = 0493

where the initial density distribution ∆ρ0(k) ≡ ∆ρ(k, t = 0), and as before we have494

chosen to set ∆s(t ≤ 0) = 0. This system of equations can be solved to arrive at495

∆s(k, r) =
h̄
(
p− ikū+ 1

2 t
−1
r

)
(r − p)(r − ikū)ρ̄

∆ρ0(k)496

which describes the surface perturbation relative to the initial density distribution. The497

poles of the transfer function are at r = p and r = ikū. The latter is associated with498

the timescale for the advection of the density distribution. Applying the inverse Laplace499

transform, the transfer function in frequency space is500

Tsρ0(k, t) ≡ ∆s(k, t)

∆ρ0(k)
=
h̄
(
p− ikū+ 1

2 t
−1
r

)
ρ̄(p− ikū)

(
ept − eikūt

)
(24)501

We can follow a similar procedure to find the response of the horizontal velocity502

to perturbations in the density:503

Tuρ0(k, t) ≡ ∆u(k, t)

∆ρ0(k)
=
p− ikū+ 1

2 t
−1
r

ikρ̄
ept (25)504

Note that in the DVA formulation, the spatial distribution of the density at any505

point in time can be found by taking the inverse F.T. of the transfer function which re-506

lates the density to the initial density distribution:507

Tρρ0(k, t) =
∆ρ(k, t)

∆ρ0(k)
= eikūt508

5.5 Perturbations within the D2T formulation509

Finally, we again repeat the perturbation analysis outlined in section 5.2, but this510

time we assume the ice flow can be described by the Density-to-Thickness Adjustment511

[D2T] formulation. The equations of motion and the boundary conditions are shifted to512

mimic the thickness adjustment performed in the D2T formulation, such that all vari-513

ables relate to the same physical quantities.514

In the D2T formulation, the density is set as a constant ρice everywhere, and the515

surface of the glacier is shifted by the firn air-content, such that the height is equal to516

the ice-equivalent thickness: hice ≡ h−δ. In this formulation, the momentum-conservation517

described by Equation (6) becomes518

∂x (4(h− δ)η∂xu)− tbx = ρiceg(h− δ) (∂x(s− δ) cosα− sinα)519

–13–
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which can be expressed as520

∂x

(
4
ρ

ρice
hη∂xu

)
−
(u
c

)1/m

=
ρ

ρice
ρgh∂xs cosα− ρgh sinα+

ρ

ρice
gh2∂xρ cosα521

(26)522

where the firn air-content has been replaced by the vertically-averaged density ρ = ρice(1−523

δ/h). Comparing this to Equation (6), which is the complete form of the SSA momen-524

tum equation in the presence of a varying density field, we see that, while there is some525

similarity in the additional terms, there are many differences which do not disappear to526

order O (δ) in the limit δ � h. The density is constant in the D2T formulation, and527

so the mass-conservation in Equation (2) becomes528

∂xu+ ∂zw = 0 (27)529

The kinematic boundary conditions in Equation (11) are also modified in the D2T for-530

mulation, since the location of the surface in the model is shifted. At the upper and lower531

surfaces respectively,532

∂t(s− δ) + u∂x(s− δ)− w|s−δ = as533

∂tb+ u∂xb− w|b = −ab534

Combining the two boundary conditions and replacing the firn air-content with the vertically-535

averaged density, we find536

∂t

(
ρ

ρice
h

)
+ u∂x

(
ρ

ρice
h

)
− (w|s−δ − w|b) = a (28)537

The firn air-content is applied as an initial static adjustment to the glacial surface538

in the D2T formulation, and so the applied density perturbation in this analysis is also539

static: ∆ρ(x, t) = H(t)∆ρ(x). Applying the perturbations in Equations (7) and (8),540

the momentum equation to zeroth-order solution is identically equal to the reference so-541

lution in Equation (9), in other words the average density can equally well be expressed542

as a shift in the glacial thickness. This is not the case at higher orders. Keeping terms543

to first-order in the perturbations, and applying the Fourier and Laplace transforms de-544

fined in Equation (13), the equations of momentum and mass conservation together with545

the kinematic boundary conditions, become546

ξ̃∆u =

(
ikτd
ρice

cotα+
τd
ρ̄h̄

)(
ρ̄∆s+ r−1h̄∆ρ

)
547

∂z∆w = ik∆u548

∆w|s̄−δ̄ −∆w|b̄ = (r − ikū)
ρ̄

ρice
∆s− ikūr−1 h̄

ρice
∆ρ549

where τd ≡ ρ̄gh̄ sinα as before, but we have defined550

ξ̃ ≡ 4η
ρ̄

ρice
h̄k2 + γ551

There is a subtlety that is important to think about carefully when applying the Laplace552

transform to the kinematic boundary condition. Within the D2T adjustment, density553

perturbations are applied within the ice sheet geometry before the run starts. Therefore554

∆ρ(x, t = 0−) = ∆ρ(x). This could also be expressed as H(t = 0−) = 1 in our nota-555

tion, although it diverges from the strict definition of the Heaviside step function. Both556

here and in the earlier analysis, we choose ∆s(t = 0−) = 0, i.e. we don’t apply an in-557

stantaneous response in the unmodified glacial surface. Therefore when taking the L.T.558

of the first term in Equation (28) to first order in the perturbations, we have559

L.T.

(
∂t

(
ρ̄

ρice
∆h+

h̄

ρice
H(t)∆ρ

))
= r

(
ρ̄

ρice
∆h+

h̄

ρice
r−1∆ρ

)
−
[
ρ̄

ρice
∆h+

h̄

ρice
H(t)∆ρ

]
t=0−

560

=
ρ̄

ρice
r∆h561
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This system of equations can be solved to arrive at562

Tsρ(k, r) ≡
∆s(k, r)

∆ρ(k)
=

h̄p̃

ρ̄r (r − p̃)
563

where we have defined564

p̃ ≡ it̃−1
p − t̃−1

r565

t̃−1
p ≡ k

(
ū+ τdξ̃

−1
)

566

t̃−1
r ≡ ρ̄

ρice
ξ̃−1k2τdh̄ cotα567

Taking the inverse Laplace, the transfer function in frequency space is568

Tsρ(k, t) ≡
∆s(k, t)

∆ρ(k)
=
−h̄
ρ̄

(
1− ep̃t

)
(29)569

We observe that the time scale of this transfer function is different to those derived pre-570

viously in Equations (18, 21 & 24). This is because of the dependence in the definition571

of δ on h, which is one of the response variables in the perturbation analysis. The lo-572

cation of the pole in the complex plane changes whenever the contribution to ∆s changes,573

and with it the expression for the time scale.574

We can transform this transfer function into the response observed in the adjusted575

surface sice ≡ s− δ, using the relationship ∆ρ = −ρice∆(δ/h):576

∆sice

∆ρ
=

∆(h− δ)
∆ρ

=
h̄

ρice
+

(
1− δ̄

h̄

)
∆h

∆ρ
=

h̄

ρice
ep̃t577

The perturbation in the adjusted surface is equal to the firn air-content perturbation ini-578

tially, and as the response evolves ∆sice → 0, such that the induced perturbation in the579

glacial surface decays away. If we express the perturbation in terms of the firn air-content580

which has units ‘distance’, and set δ̄ = 0, such that ∆ρ = −(ρice/h̄) × ∆δ, then we581

find582

∆sice

∆δ
= −ep̃t583

which is identical to the transfer function −Tss0 derived in Equation (27) of Gudmundsson584

(2008). This makes sense since the density perturbation expressed as ∆δ in the D2T ad-585

justment is identical to a shift in s0 = −δ. While over time the perturbation in the ice-586

equivalent surface dissipates, by definition this means that the unmodified surface de-587

velops a depression equal to the firn air-content of the density perturbation, giving rise588

to a constant transfer function at all frequencies in the steady-state.589

We can follow a similar procedure to find the response of the horizontal velocity590

to perturbations in the density:591

Tuρ(k, t) ≡
∆u(k, t)

∆ρ(k)
=
p̃− ikū
ikρ̄

ep̃t (30)592

Note that again this expression reduces to the transfer function Tus0 derived in Equa-593

tion (29) of Gudmundsson (2008), if we set δ̄ = 0 and write the perturbation in terms594

of the firn air-content: Tuδ = −ρice
h̄
×Tuρ; while at the same time restricting Equation595

(29) of Gudmundsson (2008) to the flow-line case by setting the transverse wave num-596

ber l to zero.597

6 Perturbation Analysis: The Case of a Floating Ice-Shelf598

In this section, we repeat the perturbation analysis detailed extensively in section599

5 for each of the four density formulations in the case of a grounded ice sheet, but this600
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time applied to a floating ice shelf reference state. There are a number of key differences601

to that of a uniform grounded ice sheet, which we highlight as we go through the deriva-602

tions below. If the reader is less interested in the mathematical details of these deriva-603

tions, they can skip forward to section 7 which summarises and analyses the different604

transfer functions.605

We follow the same layout as before by describing the reference solution for the float-606

ing ice-shelf in section 6.1, and then in section 5.2 we go through the steps that are par-607

ticular to deriving the transfer functions in the case of a floating ice-shelf in the DV for-608

mulation. Subsequent derivations (in sections 6.3 to 6.5) build on this derivation and only609

explicitly present steps which require a different treatment. In outline, the steps in each610

derivation are to take the relevant momentum and mass conservation equations, together611

with the kinematic boundary conditions, to arrive at a system of differential equations612

which relate small perturbations in the density and surface fields. By assuming a sep-613

aration of scales, derivatives in the background thickness and velocity fields are treated614

as locally constant. This makes it possible to take the Fourier and Laplace transforms615

and arrive at a linearised system of equations. These can be solved to arrive at the trans-616

fer functions, which describe the phase and amplitude of surface field perturbations in617

response to a prescribed density perturbation as a function of frequency and time. The618

transfer functions are now additionally a function of the spatial coordinate x, due to their619

dependence on the value of the background field derivatives at the point of the pertur-620

bation.621

6.1 Reference Solution622

The equilibrium profile of a floating ice shelf is a well-known solution in glaciology,623

with one of the earliest derivations, to our knowledge, being that in Van der Veen (1983).624

We repeat the derivation in Appendix C for reference. The SSA momentum equation625

given by Equation (1), for a floating ice shelf restricted to a one-dimensional flow-line626

for simplicity, in the presence of a varying density field, is627

∂x

(
4hη∂xu+

2hη

ρ

Dρ

Dt

)
= ρgh∂xs+

1

2
h2g∂xρ628

For a floating ice shelf, the glacial height and surface are no longer offset by a constant.629

Instead they obey the flotation condition, where the upthrust of the ocean on the bed630

is equal to the weight of the water displaced, and this balances the weight of the over-631

lying ice sheet, such that632

s− S = h

(
1− ρ

ρw

)
(31)633

The ocean surface is always unperturbed, ∂xS = 0, and so we can substitute the re-634

lationship,635

∂xs = ∂x

(
h

(
1− ρ

ρw

))
636

into the momentum equation, to arrive at637

∂x

(
4hη∂xu+

2hη

ρ

Dρ

Dt

)
= ∂x

(
1

2
ρgh2

(
1− ρ

ρw

))
638

Integrating both sides, we find that momentum-conservation for a floating ice shelf with639

variable density, obeys640

4η∂xu+
2η

ρ

Dρ

Dt
=

1

2
%gh (32)641

where % ≡ ρ(1−ρ/ρw), and we have used the boundary conditions at the calving front642

in Equation (4) to set the integration constant to zero.643
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6.2 Perturbations within the DV formulation644

We begin with applying a small perturbation to the ice shelf, and assume that the645

ice dynamics can be described by a static density distribution as specified by the Den-646

sity Variations [DV] formulation. This is a repeat of the analysis of section 5.2 but ap-647

plied to a floating ice shelf. One of the key complications is that, unlike the reference648

solutions for a uniform ice sheet of constant thickness, the reference solutions for h and649

u vary with x. Additionally, the relationship between s and h is determined by the flota-650

tion condition in Equation (31) and so ∆h 6= ∆s.651

In the DV formulation, the momentum and mass conservation equations describ-652

ing the ice flow, Equations (32) and (2) respectively, become653

4η∂xu+
2η

ρ
u∂xρ =

1

2
%gh654

u∂xρ+ ρ(∂xu+ ∂zw) = 0655

and the kinematic boundary conditions are given by Equation (11). We apply a static656

perturbation to the density field, as described by Equations (7) and (8), with ∆ρ(x, t) =657

H(t)∆ρ(x) and the reference density ρ̄ is assumed to be spatially and temporarily con-658

stant. The momentum equation to zeroth-order is identically equal to the reference so-659

lution:660

∂xū =
%̄gh̄

8η
661

where %̄ ≡ ρ̄(1−ρ̄/ρw). While to first-order in the perturbations, the equations of mo-662

tion are663

4η∂x∆u+
2η

ρ̄
ūH(t)∂x∆ρ =

1

2
%̄g∆h+

1

2
gh̄H(t)∆ρ

(
2
%̄

ρ̄
− 1

)
664

∂z∆w = −∂x∆u− ūH(t)
∂x∆ρ

ρ̄
(33)665

The kinematic boundary conditions at the upper and lower surfaces to zeroth-order are666

ū∂xs̄− w̄|s̄ = as667

ū∂xb̄− w̄|b̄ = −ab668

Notice the additional terms that arise due to the spatial variability of the reference so-669

lutions, s̄(x) and b̄(x). Nonetheless they still impose ∂zw̄|s̄ = ∂zw̄|b̄ = 0, since u is in-670

dependent of depth in the SSA. Therefore, to first-order in the perturbations, and com-671

bining the two boundary conditions, we have672

∆w|s̄ −∆w|b̄ = ∂t∆h+ ū∂x∆h+ ∆u∂xh̄ (34)673

We wish to solve the system of equations given by Equations (33) and (34). The spa-674

tially varying reference solutions, h̄(x) and ū(x), mean that applying the Fourier trans-675

form as before would lead to convolution between variables in frequency space, which676

then no longer creates a linear system of equations. A direct solution of these differen-677

tial equations is also not possible. Instead we turn to an approximation proposed in Ng678

et al. (2018). This approximation applies the Fourier and Laplace transforms to derive679

the transfer equations, under the assumption that the length scale for variation in the680

reference solution is much larger than that in the perturbations. In other words, we de-681

rive the transfer functions assuming that the reference solutions, ū(x) and h̄(x), are lo-682

cally constant. Under this assumption, the Fourier and Laplace transforms of Equations683

(33) and (34) are684

−4ikη∆u− 2ikη

ρ̄
ūr−1∆ρ =

1

2
%̄g∆h+ gh̄r−1∆ρ

(
%̄

ρ̄
− 1

2

)
685

∂z∆w = ik∆u+ ikūr−1 ∆ρ

ρ̄
686

∆w|s̄ −∆w|b̄ = r∆h− ikū∆h+ ∆u∂xh̄687
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where we have chosen to set the instantaneous response ∆h(t = 0−) = 0 as before.688

Notice that ū and h̄ continue to be functions of x, while ∆u and ∆h are functions of (k, r).689

Solving this system of equations, we arrive at the transfer function in the Laplace do-690

main:691

Thρ(k, x, r) =
∆h

∆ρ
=
h̄
(

1
2 ikūφ

? − φ (2∂xū− β)
)

rρ̄ (r − pFL)
692

where the dependence on x comes from the spatial variation of the background fields h̄693

and ū, and we have defined694

β ≡ ρ̄gh̄

8η
695

φ ≡ 1− ∂xh̄

ikh̄
696

φ? ≡ 1 +
∂xh̄

ikh̄
697

pFL ≡ ikū− φ∂xū698

We can convert back into the time-domain through the inverse Laplace transform. The699

function has two poles at r = 0 and r = pFL. For the reference solution ∂xū > 0, and700

so the pole defined by r = pFL will reside in the left half of the complex plane, the same701

as in previous solutions. We arrive at702

Thρ(k, x, t) =
h̄
(

1
2 ikūφ

? − φ (2∂xū− β)
)

ρ̄pFL

(
epFLt − 1

)
(35)703

Numerical integration is required to transform this from the frequency domain into the704

spatial domain. Following the procedure in Ng et al. (2018), the transformation into the705

spatial domain is slightly different to that described in Equation (19). The thickness per-706

turbation in the Fourier-domain is given by707

∆h(k, t) =

∫ ∞
−∞

Thρ(k, x, t)∆ρ(x)eikxdx708

and taking the inverse Fourier transform, we arrive at the thickness perturbation, ∆h(x, t).709

We can also follow a similar procedure to find the response of the horizontal ve-710

locity to perturbations in the density:711

Tuρ(k, x, t) =
−ū
(

1
2 ikū+ ∂xū− β

)
ρ̄pFL

−
∂xū

(
1
2 ikūφ

? − φ (2∂xū− β)
)

ikρ̄pFL
epFLt (36)712

The first term in this transfer function is the steady-state response, which for small wave-713

lengths tends to −ū/2ρ̄ and for large wavelengths tends to zero. While the second term714

is a transient component which decays over time. For small wavelengths it tends to zero,715

but for large wavelengths (k → 0) it scales as 1/k and tends to infinity. This spurious716

behaviour arises because the derivation of the transfer function relied on a separation717

of scales between the perturbation and the background steady-state, which breaks down718

at very large wavelengths. If ∂xū and ∂xh̄ = 0, then the term would disappear. It is719

important to filter out these very large wavelength contributions in any perturbations720

that are applied. In the simulations that follow in section 7, we set the lowest frequency721

component of the transfer function to zero, so that the numerical integration is well-behaved.722

6.3 Perturbations within the DV-BF formulation723

If we follow the same procedure, but ignore the term in Dρ/Dt on the left hand724

side of the momentum equation, as described by the Density Variations - Body Force725
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only [DV-BF] formulation, then the momentum and mass conservation equations describ-726

ing the ice flow, Equations (32) and (2) respectively, become727

4η∂xu =
1

2
%gh728

u∂xρ+ ρ(∂xu+ ∂zw) = 0729

and the derived transfer functions are730

Thρ(k, x, t) =
h̄ (ikū− φ (2∂xū− β))

ρ̄pFL

(
epFLt − 1

)
(37)731

Tuρ(k, x, t) =
−ū (∂xū− β)

ρ̄pFL
− ∂xū (ikū− φ (2∂xū− β))

ikρ̄pFL
epFLt (38)732

6.4 Perturbations within the DVA formulation733

In this next example, we assume the ice dynamics can be described by an initial734

density distribution which then advects over time as specified by the Density Variations735

Advected [DVA] formulation. We follow the procedure in section 5.4 closely but this time736

applied to the reference state of a floating ice shelf.737

In the DVA formulation, the equations of motion describing the ice flow, from Equa-738

tions (32), (2) and (23) respectively, are739

4η∂xu =
1

2
%gh740

∂xu+ ∂zw = 0741

∂tρ+ u∂xρ = 0742

We apply a perturbation to the density field which can evolve over time as described in743

Equations (7) and (8) with ∆ρ(x, t < 0) = 0. The kinematic boundary conditions are744

the same as we had before in Equation (34). Keeping terms to first-order and applying745

the Fourier and Laplace transforms, as described in section 6.2 for spatially variable ref-746

erence states, we arrive at the following system of equations:747

−4ikη∆u =
1

2
%̄g∆h+

1

2
gh̄∆ρ

(
2
%̄

ρ̄
− 1

)
748

∂z∆w = ik∆u749

∆w|s̄ −∆w|b̄ = r∆h− ikū∆h+ ∆u∂xh̄750

r∆ρ−∆ρ0 = ikū∆ρ751

where ∆ρ0 ≡ ∆ρ(k, t = 0), and as before we have chosen to set ∆h(t = 0−) = 0.752

This system of equations can be solved to arrive at an expression for the transfer func-753

tion in the Laplace-domain:754

Thρ0(k, x, r) ≡ ∆h

∆ρ0
=

−h̄φ (2∂xū− β)

ρ̄ (r − pFL) (r − ikū)
755

Applying the inverse-Laplace this can be converted to the time-domain, and after some756

simplification, we arrive at757

Thρ0(k, x, t) = h̄

(
2

ρ̄
− 1

%̄

)(
epFLt − eikūt

)
(39)758

We can also follow a similar procedure to find the response of the horizontal ve-759

locity to perturbations in the initial density field:760

Tuρ0(k, x, t) =
− (2∂xū− β)

ikρ̄
epFLt (40)761
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6.5 Perturbations within the D2T formulation762

Finally, we repeat the perturbation analysis for a floating ice shelf, but assume the763

ice-flow can be described by the Density-to-Thickness Adjustment [D2T] formulation.764

This follows closely a combination of the procedures in section 5.5 and section 6.2.765

In the D2T formulation, the momentum-conservation described by Equation (32)766

becomes767

4η∂xu =
1

2
ρiceg(h− δ)

(
1− ρice

ρw

)
768

which can be expressed in terms of the vertically-averaged density as769

4η∂xu =
1

2
ρgh

(
1− ρice

ρw

)
770

The mass-conservation and kinematic boundary conditions are given by Equations (27)771

and (28) respectively. We apply a static perturbation to the density field, as described772

by Equations (7) and (8), with ∆ρ(x, t) = H(t)∆ρ(x). Unlike in all the previous con-773

figurations, the zeroth-order solution to the momentum equation is not identically equal774

to the reference solution given by Equation (C1). We have a slight shift in the equilib-775

rium profile of the floating ice shelf:776

∂xū =
ρ̄gh̄

8η

(
1− ρice

ρw

)
777

which vanishes if the background density is equal to that of pure ice. Keeping terms to778

first-order and applying the Fourier and Laplace transforms as described in section 6.2779

for spatially variable reference states, we arrive at the following system of equations:780

−4ikη∆u =
1

2
g
(
ρ̄∆h+ h̄r−1∆ρ

)(
1− ρice

ρw

)
781

∂z∆w = ik∆u782

∆w|s̄−δ̄ −∆w|b̄ = (r − ikū)
ρ̄

ρice
∆h− ikūr−1 h̄

ρice
∆ρ+

ρ̄

ρice
∂xh̄∆u783

where again with the D2T adjustment approach, the density perturbation gets applied784

before the run starts, and so ∆s(t = 0−) = 0, but effectively H(t = 0−) = 1, as dis-785

cussed in section 5.5. Following the same steps as before, we arrive at the transfer func-786

tion,787

Thρ(k, x, r) ≡
∆h

∆ρ
=

h̄p̃FL

ρ̄r (r − p̃FL)
788

where we have defined789

p̃FL ≡ ikū− βφ
(

1− ρice

ρw

)
790

Taking the inverse Laplace, we arrive at791

Thρ(k, x, t) =
−h̄
ρ̄

(
1− ep̃FLt

)
(41)792

This is identical to the transfer function derived in Equation (29) for the D2T adjust-793

ment in the context of a grounded ice sheet, just with an adjusted pole p̃FL. Again, this794

leads to a constant transfer function at all frequencies in the steady-state.795

We can also follow a similar procedure to find the response of the horizontal ve-796

locity to perturbations in the density:797

Tuρ(k, x, t) = −β
(

1− ρice

ρw

)
1

ikρ̄
ep̃FLt (42)798
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7 Comparing the Perturbation Analysis Results799

The transfer functions derived in the previous two sections, which describe the re-800

sponse of the ice sheet to small perturbations in the ice density, have given us a num-801

ber of insights into the different density formulations proposed in section 3. In this sec-802

tion we summarise the results and analyse their implications.803

7.1 The Steady-State Solutions with Uniform Density804

In sections 5.1 and 6.1, we derived the equilibrium solutions for the ice-flow with805

constant density for two reference configurations: a grounded ice sheet, and a floating806

ice shelf. We would expect this to be the same as the zeroth-order solution within the807

perturbation analysis for each of the density formulations. For the grounded ice sheet,808

this is indeed the case, with the zeroth-order D2T solution the same as for all the other809

density approaches. In all cases,810

ū = c
(
ρ̄gh̄ sinα

)m
811

The reference velocity scales as ρ×h, a quantity which is preserved in the D2T adjust-812

ment, and so this agreement is perhaps not surprising. However, for the floating ice shelf,813

the D2T zeroth-order momentum equation is814

∂xū =
ρ̄gh̄

8η

(
1− ρice

ρw

)
(43)815

whereas in the other density formulations we have816

∂xū =
ρ̄gh̄

8η

(
1− ρ̄

ρw

)
(44)817

where all variables refer to the same physical quantities. Therefore, in a situation with-818

out horizontal density variations, but in which the average density is less than pure ice819

(i.e. the same proportion of firn everywhere), we find that the velocity field will be in-820

accurate when estimated from a simulation which uses the D2T adjustment. To under-821

stand how this arises, consider the flotation condition obeyed by an ice shelf, in which822

the weight of the water displaced equals the weight of the ice-column above. In the D2T823

adjustment, the weight of the ice-column is preserved and so the amount of water dis-824

placed is the same, which means that the location of the lower surface b is unchanged.825

However, in the D2T adjustment, the thickness of the ice shelf is reduced if the average826

density is less than that of pure ice. This means that the upper surface s is shifted down-827

wards. The thickness of the ice shelf decreases with distance from the grounding line,828

and so a constant average density implies a decreasing firn air-content δ(x) with distance829

from the grounding line. Therefore, the D2T adjustment is largest close to the ground-830

ing line, and as such the gradient of the upper surface ∂xs is smaller in the D2T adjust-831

ment formulation. This is one of the many factors influencing the velocity field (and ul-832

timately the thickness profile) and leads to a slightly different equilibrium state for the833

floating ice shelf in the D2T formulation.834

7.2 The Transfer Functions835

In Tables 1 and 2, we summarise the transfer functions derived in sections 5 and836

6 for the grounded ice sheet and floating ice shelf respectively, in the limit as t → ∞.837

The transfer functions have a steady-state component (summarised here) as well as a838

time component which decays exponentially. The transfer functions describe the ampli-839

tude and phase of the induced perturbations in the thickness and velocity fields as a func-840

tion of the wavelength of the applied density perturbation. The analytical transfer func-841

tions derived in this study are valid for wavelengths of one ice-thickness or greater (λ >842

h̄), otherwise the validity of the SSA breaks down. In the case of the floating ice shelf,843
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Table 1. Normalised steady-state transfer functions for induced perturbations in the glacial

thickness in response to an initial density perturbation: Thρ(k, t)×
(−ρ̄
h̄

)
. Note, for the grounded

ice sheet ∆h = ∆s, and so Thρ = Tsρ.

GROUNDED ICE-SHEET FLOATING ICE-SHELF

Density Variations [DV]:
p+ 1

2 t
−1
r − ikūζ
p

1
2 ikūφ

? − φ (2∂xū− β)

pFL

Density Variations (body
p+ 1

2 t
−1
r

p

ikū− φ (2∂xū− β)

pFL

force term only) [DV-BF]:

Density Variations Advected [DVA]:
p− ikū+ 1

2 t
−1
r

p− ikū
eikūt

−φ (2∂xū− β)

pFL − ikū
eikūt

Density Variations translated 1 1
to thickness adjustment [D2T]:

we have the additional restriction that the wavelength must be less than the scale of vari-844

ation in the background fields for the method to be valid. This restricts k < ∂xh̄/h̄ and845

k < ∂xū/ū. The steady-state transfer functions for a grounded ice sheet are plotted in846

Figure 2, and for a floating ice shelf in Figure 3. For the grounded ice sheet, results are847

shown for two different slipperiness values, and for the floating ice shelf for two differ-848

ent horizontal velocities. There are clear qualitative and quantitative differences between849

the four different density formulations that we have studied.850

One notable difference is that within the D2T adjustment formulation, the steady-851

state transfer function describing the amplitude transfer between the density perturba-852

tions and induced perturbations in the thickness, is equal to unity independently of wave-853

length. The other density formulations are more nuanced in their frequency response and854

dependent on the flow characteristics. For example, the induced surface perturbations855

are dampened at small wavelengths for many of the density formulations. On the other856

hand, in the case of a floating ice shelf, the amplitude of the induced thickness pertur-857

bations, particularly at larger wavelengths and slower flows, is amplified to be larger than858

that of the initial density perturbation. Comparing the behaviour of the DV and DV-859

BF formulations, we see that the transfer functions are more similar at larger wavelengths,860

and are a particularly close match for less-slippery grounded topography. This makes861

sense, since as the slipperiness decreases the basal drag dominates on the left hand side862

of the momentum equation, and the additional density correction term becomes less sig-863

nificant, as discussed in section 4. Note that for very small wavelengths the SSA breaks864

down and we care less about the discrepancy between different methods.865

In both the D2T adjustment and DVA formulations, the perturbation in the ice866

velocity field decays over time to zero across all wavelengths. This is a consequence of867

the advection of the density perturbation with the ice-flow. This advection is explicit868

in the DVA formulation, but implicit in the D2T adjustment method. In the D2T method,869

the density perturbation is translated to a perturbation in the adjusted ice-equivalent870
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Table 2. Normalised steady-state transfer functions for induced perturbations in the horizon-

tal velocity in response to an initial density perturbation: Tuρ(k, t) ×
(−ρ̄
ū

)
.

GROUNDED ICE-SHEET FLOATING ICE-SHELF

Density Variations [DV]:

(
1
2 t
−1
r − ikūζ

)
p

−
(

1
2 ikū+ ∂xū− β

)
pFL

Density Variations (body
1
2 t
−1
r

p

− (∂xū− β)

pFL

force term only) [DV-BF]:

Density Variations Advected [DVA]: 0 0

Density Variations translated 0 0
to thickness adjustment [D2T]:

surface which then dissipates over time. Consequently, the velocity perturbation tends871

to zero in the steady-state. However, the steady-state D2T thickness transfer function872

does not approach zero, because we add the initial density perturbation back onto the873

adjusted surface to find the unmodified surface at the end of the simulation.874

7.3 Transient Response to a Perturbation875

The transfer functions allow us to now calculate the transient flow response to a876

prescribed initial perturbation in density. In Figures 4 and 5, we have plotted the evo-877

lution of the surface and velocity in response to a 10% Gaussian perturbation in the den-878

sity field, for the grounded ice sheet and floating ice shelf respectively. As discussed in879

section 7.1, the zeroth-order solution for a floating ice shelf with the D2T adjustment880

applied (Equation (43)) is slightly different to that in the other density formulations. Here881

we are focusing on the first-order contribution from small perturbations and so we have882

plotted the D2T perturbation relative to the zeroth-order solution in the other formu-883

lations (Equation (44)) to aid comparison.884

For the grounded ice sheet of Figure 4, the surface is initially unperturbed, and then885

as the ice flows through this more dense region, a surface depression is formed at the lo-886

cation of the density perturbation. Note that in the context of the D2T formulation, we887

are referring to the unmodified surface, where the initial density perturbation is added888

back on to the ice-equivalent surface in the model as a corresponding thickness pertur-889

bation. This depression travels with the ice-flow in the case of the DVA (density vari-890

ations advected) formulation, but for the static DV, DV-BF and D2T formulations it stays891

fixed. The depression is most pronounced in the D2T adjustment method, whereas there892

is some damping of the perturbation in the other density formulations. As the ice flows893

through the density perturbation, a kinematic wave is formed at the surface travelling894

at a phase speed of ω/k, where the angular frequency ω is equal to the imaginary part895

of the exponent of the transfer function Tsρ(k, t) in Equations (18, 21, 24 & 29). This896

phase speed is identical across all the density formulations (the slight correction due to897
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Figure 2. Steady-state transfer functions for the grounded ice sheet, showing the impact of

horizontal density variations on surface topography (upper panel) and horizontal velocity (lower

panel). The scales are chosen such that the mean thickness, basal shear stress, and deformational

velocity are all set to unity, i.e. h̄ = 1, g = 1/ρ̄h̄ sinα and η = 0.5. Additionally we set α = 3◦,

ρ̄ = 792, m = 1, and consider two choices of mean slipperiness: c = 1 (LHS) and c = 10 (RHS).

The wavelength is in units of h̄. Note the DVA line is obscured behind the D2T line in the lower

panel plots.
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Figure 3. Steady-sate transfer functions for the floating ice shelf, showing the impact of

horizontal density variations on ice-shelf thickness (upper panel) and horizontal velocity (lower

panel). The transfer functions are spatially-dependent; here we consider the transfer functions

at a particular spatial coordinate for which h̄(x) = h̄0 and ū(x) = ū0. The scales are chosen

such that the mean thickness, horizontal deviatoric stress and strain rate are all set to unity, i.e.

h̄0 = 1, g = 4/%̄h̄0 and η = 0.5. Additionally we set α = 3◦, ρ̄ = 792, a = 0.5 and consider

two choices for the horizontal velocity: ū0 = 1 (LHS) and ū0 = 10 (which impacts the solution

through ∂xh̄). The wavelength is in units of h̄0. Note the DVA line is obscured behind the D2T

line in the lower panel plots.
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Figure 4. Example of the evolution of the spatial distribution in h(x, t) [solid lines] and

u(x, t) [dashed lines] after an initial 10% Gaussian density perturbation applied in ∆ρ, for the

grounded ice sheet. This compares the analytical responses across the four different approaches

for handling density evolution. See the body of the text for a description of the four methods. In

this simulation, we set α = 3◦, ρ̄ = 900 kg/m3, m = 1, η = 5 × 103 kPa · yr and ū = 1000 m/yr.
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Figure 5. Example of the evolution of the spatial distribution in the upper and lower sur-

faces, s(x, t) and b(x, t) [solid lines], and velocity, u(x, t) [dashed lines], after an initial 10%

Gaussian density perturbation applied in ∆ρ, for the floating ice shelf. The perturbed surfaces

and velocity are plotted relative to their equilibrium values (plotted in Figure C1), with the up-

per and lower surfaces offset by ±100m to separate them. This compares the analytical responses

across the four different approaches for handling density evolution. See the body of the text for a

description of the four methods. In this simulation, we set ρ̄ = 900 kg/m3, η = 5 × 103 kPa · yr

and the surface accumulation as = 1 m/yr. Note the sight glitches in the lower surface in the

unperturbed region to the left of each plot are just an artefact of the numerical integration in the

DVA approach.
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ρ̄ vs ρice in the D2T method is negligible), and equals898

ω

k
= ū+ τdξ

−1 = ū+
mū

1 + 4h̄ηk2/γ
899

The wavelength dependency of the phase speed causes the kinematic wave to disperse900

as it propagates. In the limit of small and large wavelengths, the phase speed tends to901

ū and (m+1)ū respectively. In general a surface disturbance will propagate at the group902

velocity, given by dω/dk. In the DVA formulation, there is an additional transient com-903

ponent in the transfer function in Equation (24), with a phase speed which travels with904

the advecting of the density perturbation: ω/k = ū. In the example in Figure 4, this905

phase speed is 1000 m/yr, which is in excellent agreement with the apparent propaga-906

tion of the surface depression in the figure.907

For the floating ice shelf of Figure 5, the initial density perturbation immediately908

causes a depression in the ice due to the flotation condition, which requires more water909

be displaced to counteract the weight of the heavier ice. This depression dissipates in910

the lower surface, but persists in the upper surface due to the flotation condition, and911

stays fixed in the DV, DV-BF and D2T formulations. The perturbation generates a kine-912

matic wave, which is most visible in the lower surface (since flotation dictates that ∆s ≈913

0.1∆b). From the transfer functions in Equations (35, 37, 39 & 41), the phase speed of914

the kinematic wave is915

ω

k
= ū− ∂xū

k2h̄
916

Again, the dependency of the phase speed on wavelength results in dispersion of the wave.917

In the DVA formulation, the additional transient component describing the propagation918

of the surface depression itself also has a phase speed equal to ū = 2000 m/yr, for the919

parameters used in the experiment in Figure 5, consistent with the apparent propaga-920

tion of the depression.921

These simulations show some broad patterns of similarity between the different ap-922

proaches for including HDVs in ice-flow models, but also some important qualitative dif-923

ferences. In the D2T adjustment, the density perturbation is applied to the adjusted sur-924

face from which it then dissipates, which means the velocity profile is a closer match to925

that of the advecting (DVA) formulation. However, to arrive at the unmodified surface926

(which is what we plotted here), the initial density perturbation must be added back onto927

the adjusted surface, and so the surface response in the D2T formulation is a closer match928

to that of the DV or DV-BF formulations. For all simulations, the DV and DV-BF for-929

mulations produce similar results, although not identical. The relative significance of the930

additional density correction term, present in the DV but not the DV-BF formulation,931

depends on the topography as discussed in section 4. In this example, the high frequency932

components in the Gaussian perturbation may increase the impact of this term, and ex-933

aggerate the differences between the DV and DV-BF formulations.934

For all these examples, with the exception of the DVA formulation, we compared935

the analytical response calculated from the transfer functions (plotted in Figures 4 and936

5 above), to numerical simulations implemented in the ice-flow model Úa. The details937

are provided in Appendix D. We found an excellent agreement which gives us confidence938

in the derived transfer functions. The results for the floating ice shelf are particularly939

pleasing since they rely on the approximation presented in Ng et al. (2018) to derive the940

analytical transfer functions, which confirms the validity of this approximation.941

8 Numerical Simulations of Antarctica942

In the preceding sections, we have extensively analysed the behaviour of the ice flow943

within a theoretical framework for the four different density formulations proposed in944

section 3: Density-to-Thickness adjustment (D2T), Density Variations (DV), Density945
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Figure 6. Surface elevation of the Pine Island glacier and Thwaites glacier region in Antarc-

tica. Our domain is outlined in red; the grounding line in bright green.

Variations - Body Force only (DV-BF), and Density Variations Advected (DVA). In this946

section we investigate the impact of horizontal density variations (HDVs) in a real-world947

setting, and focus on the two approaches for including HDVs which are used in current948

ice-flow models. The first is the DV-BF formulation, which is the default implementa-949

tion in Úa. This incorporates a static density distribution, with horizontal density gra-950

dients included in the body-force driving term of the SSA momentum equation. The sec-951

ond formulation is the D2T adjustment method which is the default in many ice-flow mod-952

els, and requires no adjustment to the standard SSA equations. It is simple to imple-953

ment, only requiring an adjustment to the initial ice-thickness distribution.954

We use the shallow-ice model Úa (Gudmundsson, 2020b) for these simulations, and955

focus on the Pine Island and Thwaites glaciers in the Western Antarctic, a region which956

has suffered some of the most rapid mass-loss in the Antarctic (Rignot et al., 2019; Shep-957

herd et al., 2018). The computational domain is outlined in Figure 6. In addition to the958

DV-BF and D2T methods, we include a simulation where the density is assumed con-959

stant throughout the ice sheet, but the height is set at the thickness of the ice sheet, with-960

out any D2T adjustment. We refer to this method as No Variations [NV]. We choose961

an average density ρ = 900 kg/m3 everywhere, which minimises the grounding line mis-962

match in the simulation domain.963

We follow the approach taken in recent simulation studies of this region, such as964

in Barnes et al. (2021) and De Rydt et al. (2021). The geometry of the Western Antarc-965

tic Ice Sheet was taken from the BedMachine Antarctica dataset (Morlighem, 2020; Morlighem966

et al., 2020), which includes estimates of the firn air-content, δ. The firn correction is967

applied by default to the thickness published in the BedMachine Antarctica dataset. The968

varying density of the Western Antarctic Ice Sheet can be extracted from the firn air-969

content and is plotted in Figure 7, together with measurements of surface velocity ex-970

tracted from Gardner, Moholdt, et al. (2018). Model parameters relating to the rheol-971

ogy of ice (rate factor A) and basal sliding conditions (slipperiness C) were selected us-972

ing a model inversion. The inversion depends on two regularisation parameters. A pre-973

vious study by Barnes et al. (2021) looked in detail at inversion methods used in three974

different ice-flow models, including Úa. The authors performed an L-curve analysis to975

find the optimal trade-off between minimising the misfit and regularisation terms in the976

cost function. We utilise the regularisation parameters found in that study: γa = 1, γs =977

–29–
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Figure 7. The observed velocities and density variation for the Western Antarctic around the

Pine Island and Thwaites glaciers.

104. See Barnes et al. (2021) for a comprehensive description of these parameters. We978

assume a common choice for the creep exponent in Glen’s flow law, n = 3 which de-979

scribes the ice rheology, and similarly set the exponent m = 3 in Weertman’s sliding980

law to describe the basal sliding.981

It is important to note that the inversion products, A and C, are not unique to the982

domain. The inversion process selects the A and C fields which are consistent with the983

geometry, observed velocity fields and forward ice-flow model. Between each of the den-984

sity formulations, the forward model is slightly different, and so each formulation requires985

a slightly different A and C field to recover the observed velocities in the Antarctic do-986

main. Therefore within each of the simulations for the three different density approaches987

(DV-BF, D2T and NV), we optimise for A and C separately. This separate inversion for988

A and C is essential to ensure that the difference in sea level estimates is coming from989

the different ice-flow dynamics in the different density formulations, as opposed to dif-990

ferent initial velocities. After a diagnostic run, the model velocities are a close match to991

the observed surface velocities in each of the approaches, suggesting that any difference992

in the model dynamics due to different density formulations can, initially, be compen-993

sated for through optimisation of other model parameters. The real test of the impact994

of including density variations in the model is the evolution of the ice flow over a sig-995

nificant period of time.996

When performing a time-dependent run, the model also requires inputs for the es-997

timated surface mass-balance, and applied basal melting. Similar to other studies in this998

region, the surface mass-balance is derived from the Regional Climate Model (Van Wessem999

et al., 2014, RACMO v2.3). However, the basal melt is more difficult to infer. An esti-1000

mate can be made from principles of mass-conservation, together with observations of1001

grounding line retreat in the region. Within each simulation, we calculate the changes1002

in volume above flotation (VAF) over a 40 year period, and compare the results between1003

the different formulations for including HDVs. This is plotted in Figure 8, together with1004

the corresponding change in sea level. Over a 40yr horizon the variation between the dif-1005

–30–
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Figure 8. The change in Volume Above Flotation (VAF) for the model domain in the West-

ern Antarctic, and corresponding sea level rise, for each of the density formulations we consider

here.

ferent density formulations is approximately 2mm, a 10% correction to the overall es-1006

timate of sea level rise, with the DV-BF formulation leading to the largest estimates of1007

∆VAF. We ran a number of simulations to confirm that the impact was relatively in-1008

sensitive to some of the modelling choices we made. For example, a reduction in the ap-1009

plied basal melting leads to significantly less total mass-loss, but similar absolute differ-1010

ence in ∆VAF between the different configurations. In Figure 9, we also plot the model1011

velocities and grounding line position at the end of the 40yr run for each of the density1012

formulations. While the grounding line positions are roughly identical between each of1013

the simulations, the velocity fields in the fast flowing regions of the Pine Island and Thwaites1014

ice-shelves show subtle differences. We see slightly higher velocities in the central fast-1015

flowing region of the Pine Island ice shelf and Thwaites Eastern tongue for the DV-BF1016

compared to the D2T formulation. The slightly reduced velocity in the D2T formula-1017

tion is in keeping with the lower estimates of sea level rise.1018

In summary, we find that for the particular case of the West Antarctic Ice Sheet1019

and using a model setup typical of many recent ice-flow modelling studies, the inclusion1020

of horizontal density variations by adjusting the thickness (D2T) as commonly done, com-1021

pared to adjusting the body-force term in the momentum equation (DV-BF), leads to1022

about a 10% change in the sea level contribution of that area over 40 years.1023

9 Conclusions1024

Here we have provided a new theoretical framework for the inclusion of horizon-1025

tal density variations (HDVs) in large-scale ice sheet models, within the shallow ice stream1026

approximation (SSA), and given specific examples of the resulting impact on ice flow.1027

We analysed all previously published approaches to this problem that we could find in1028

the glaciological literature, and provided further new formulations which offer a more1029

complete description of the impact of HDVs on ice flow.1030

There are several different approaches to including HDVs, some of which require1031

modifications to the typical form of the SSA momentum and mass conservation equa-1032

–31–
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Figure 9. The model velocities (upper panel) and change in grounding line position (lower

panel) for the model domain in the Western Antarctic at the end of the simulation after

t = 40yrs, for each of the density formulations we consider here.

–32–
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tions. The arguably simplest approach, which requires no modifications to the SSA equa-1033

tions as usually listed in the literature, is to adjust the ice thickness instead of the den-1034

sity. We refer to this commonly-used approach as the density-to-thickness adjustment1035

[D2T] throughout this paper. We have shown how this approach leads to the resulting1036

adjustment in ice thickness being advected with the ice, which in effect is equivalent to1037

the initial density variations moving with the ice flow. In a situation where the density1038

and firn thickness distributions are primarily related to atmospheric processes, this might1039

not be very realistic. The key practical advantage of the D2T approach is that it requires1040

no modifications to the typical form of the SSA equations used in large-scale ice-sheet1041

modelling, and only some modifications to the input fields.1042

An alternative approach to including HDVs in large scale ice-sheet models is to ac-1043

count for them in the body-force term of the momentum-conservation equation, and to1044

express the mass-conservation equation in terms of the product of density and velocity1045

which then implicitly includes variation in the density field. This is referred to as the1046

Density Variations - Body Force only [DV-BF] approach in this paper. It requires some1047

modifications to the standard form of the SSA equations, such as including the gradi-1048

ent of density in the body-force term of the momentum equation, as shown in Equation1049

(1). In contrast to the D2T approach, the HDVs are static and do not advect with the1050

ice over time.1051

We have also suggested two other, arguably more complete, descriptions for includ-1052

ing HDVs in ice-flow models, and have shown how these lead to further additional terms1053

in the SSA equations. One is a full implementation of static density variations within1054

the SSA equations, referred to as the DV formulation in this paper. The other is an evolv-1055

ing model, where the initial density distribution advects with the ice, referred to as the1056

DVA formulation in this paper. These two models are both complete descriptions of hor-1057

izontal density variations, and do not make any approximations about the dominance1058

of certain terms in the SSA equations. The two models span the range of behaviour we1059

might expect for the density evolution. In the DV formulation, the HDVs are static, with1060

the rate of snow accumulation and compactification balanced by the advection of the ice.1061

Based on the observations of Sorge’s law (Thomas, 1973) we expect this to be the more1062

realistic formulation. At the other extreme, in the DVA formulation, the atmospheric1063

processes are limited such that density variations are fully advected with the ice flow.1064

To our knowledge, these new options have never been described before and are not im-1065

plemented in any ice-sheet models to date.1066

By solving the first-order perturbation analysis in all these various formulations1067

for the inclusion of HDVs, we have provided new insights into the impact of HDVs on1068

large-scale ice flow. We find that the different formulations result in both qualitative and1069

quantitative differences, and they sometimes result in what at first seem somewhat sur-1070

prising impacts on the ice flow. For example, over floating ice shelves in the D2T approach,1071

density variations lead to an adjustment in the position of the upper surface, while the1072

lower surface elevation is not impacted. The transfer characteristics for the different for-1073

mulations are qualitatively rather different, as we saw in Figures 2 and 3. The steady-1074

state D2T transfer function is independent of wavelength in all cases, which is only some-1075

thing we observe elsewhere in the explicitly advecting density formulation (DVA) applied1076

to a floating ice shelf. In all the other approaches, the transfer amplitudes depend on the1077

wavelength of the applied density perturbation.1078

Based on our perturbation analysis, we conclude that the commonly-used D2T ap-1079

proach has very different characteristics to the physically motivated DV formulation. We1080

instead recommend always including the gradient of the density in the body-force term1081

of the momentum equation, and in the mass-conservation equation. This follows what1082

we term the DV-BF approach, and is a closer approximation to the DV formulation. Do-1083

ing so should only require relatively simple modifications to existing computational mod-1084

els, and have minimal impact on code performance. It is more realistic than the commonly-1085

–33–
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used D2T approach, in which all terms involving ice thickness in the SSA equations and1086

boundary conditions are modified by the HDVs, for which there appears to be limited1087

justification.1088

Finally, we have conducted a numerical study of the West Antarctic Ice Sheet, and1089

provided a specific example of the impact of HDVs on ice flow within the D2T and the1090

DF-BF formulations. We find that HDVs can lead to significant differences in the esti-1091

mated ice loss over time, although these differences are likely to be small compared to1092

those resulting from uncertainties in the external forcings applied to the model. In our1093

particular simulation (see Figure 8) we find that the resulting difference in projections1094

of global sea level rise is of the order of a few mm over 40 years. While this is, at least1095

in this particular case, not a particularly large difference compared to the overall esti-1096

mated contribution from WAIS, this result shows that HDVs do impact ice flow and there-1097

fore should be taken into account accurately where possible.1098

Throughout this analysis we have treated the density as constant in the vertical1099

direction, and equal to the vertically-averaged density. This is a necessary assumption1100

in the derivation of the SSA equations in closed form with an arbitrary vertical density1101

profile, and is the first step in correctly incorporating HDVs into vertically-integrated1102

ice sheet models. However, there is scope for further improvement by implementing a1103

parameterised model for the vertical firn distribution. We discuss the implications of this1104

in Appendix B. Extending the vertically-integrated ice sheet models in this way would1105

benefit from coupling to an atmospheric model that predicts the firn density and depth1106

at the surface of the ice sheet.1107

In this study, we have been concerned with how best to incorporate HDVs into the1108

ice-flow dynamics of vertically-integrated ice-sheet models. This treats the initial vertically-1109

averaged density as an input field to the ice-sheet model, similar to other input fields like1110

the ice sheet bedrock topography or surface mass balance. In reality, we could expect1111

the horizontal density distribution to change over time in response to climate forcings,1112

with different regions experiencing higher or lower snowfall. To incorporate the changes1113

due to climate forcings would require coupling to an atmospheric model which has a com-1114

plete description of the surface processes (such as surface melt, refreezing, firn accumu-1115

lation) that lead to HDVs in the ice sheet. This would allow the horizontal density dis-1116

tribution to be updated inside the ice sheet model as it evolves.1117

Appendix A Vertical Integration of the Field Equations1118

In this appendix, we derive the modified SSA field equations that were presented1119

in section 2 which take into account horizontal variation in glacial density. These equa-1120

tions appear to have been derived for the first time by Morland (1987), although then1121

intended to describe the flow of ice shelves only. Subsequently they were derived for cou-1122

pled ice-shelf/ice-stream flow by Muszynski and Birchfield (1987), and then for grounded1123

ice where most of the motion is due to sliding by MacAyeal (1989). They have been de-1124

rived numerous times in various papers since then, e.g. (Baral et al., 2001; Schoof, 2006),1125

and well-summarised in the review article by Schoof and Hewitt (2013). Here we broadly1126

followed the derivation given in Gudmundsson (2020a), but with various modifications1127

and extensions to account for a variable density field.1128

We start by defining the vertically-integrated density:1129

〈ρ〉 =
1

h

∫ s

b

ρ(z) dz1130

where h is the ice-sheet thickness, and s and b are the upper and lower ice surface el-1131

evations, respectively. This expression can be split into a meteoric ice layer of density1132

–34–

 21699011, ja, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JF006744 by T

est, W
iley O

nline L
ibrary on [09/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR: Earth Surface

ρice, and a firn layer of thickness F and variable density ρfirn:1133

〈ρ〉 =
1

h

(∫ s−F

b

ρice dz +

∫ s

s−F
ρfirn(z) dz

)
1134

From this we can define the firn air-content :1135

δ ≡
∫ s

s−F

ρice − ρfirn(z)

ρice
dz1136

which represents the vertical distance by which the firn needs to be compacted for it to1137

have acquired the same density as that of ice, such that1138

〈ρ〉 = ρice (1− δ/h)1139

and1140

ρice × hice = 〈ρ〉 × h1141

where hice ≡ h−δ is the ice-equivalent thickness. In all that follows, we make the sim-1142

plifying assumption that the density is constant with depth and equal to the vertically1143

averaged density, i.e. that at each spatial point the density ρ(x, y, z) is given by the ver-1144

tically averaged density 〈ρ〉(x, y). Without this assumption, analytical solutions to the1145

vertically-integrated field equations are not possible, and would instead require numer-1146

ical integration and differentiation in the z-dimension, which is incompatible with shallow-1147

ice models. In all that follows we assume that the glacial density ρ(x, y, z) = ρ(x, y)1148

and we drop the angle brackets to indicate the vertical average.1149

A1 Momentum Equations1150

The shallow-ice stream approximation (SSA) applies to ice flows where the depth1151

of the ice sheet is much smaller than the horizontal dimensions. See MacAyeal (1989)1152

for a detailed discussion of the approximation. Within this approximation, the momentum-1153

conservation equations describing the ice flow in a tilted coordinate system that is par-1154

allel to the bed topography are1155

∂xσxx + ∂yτxy + ∂zτxz = −ρg sinα (A1)1156

∂xτxy + ∂yσyy + ∂zτyz = 0 (A2)1157

∂zσzz = ρg cosα (A3)1158

where α is the angle of the coordinate system to the horizontal, and σij and τij are the1159

Cauchy and deviatoric stress components respectively. The Cauchy and deviatoric stresses1160

are related through the pressure: τij = δijp + σij . The deviatoric stresses are related1161

to the strain rates through the effective viscosity:1162

τij ≡ 2ηε̇ij1163

with the strain rate given by1164

ε̇ij ≡
1

2
(∂ivj + ∂jvi)1165

The viscosity is often described by a model such as Glen’s flow law:1166

ε̇ij = Aτn−1τij (A4)1167

with rate factor A and exponent n. In some ice-flow models, the rate factor describing1168

the ice rheology is allowed to vary with depth since it is strongly dependent on temper-1169

ature, and treated as a vertically-integrated quantity. However in this derivation, we as-1170

sume the rate factor A is constant with depth, and consequently that the effective vis-1171

cosity η is constant with depth in the SSA. In the SSA, the horizontal velocities are in-1172

dependent of depth, and the vertical velocity varies linearly with depth. Thus by def-1173

inition τxx, τxy and τyy are also independent of z.1174

–35–
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To find the vertically integrated solution to these equations, we need to impose the1175

boundary conditions at the upper surface:1176

−σxx∂xs− τxy∂ys+ τxz = 01177

−σyy∂ys− τxy∂xs+ τyz = 01178

σzz = 01179

together with the boundary conditions at the lower surface:1180

tbx = (σzz − σxx)∂xb− τxy∂yb+ τxz1181

tby = (σzz − σyy)∂yb− τxy∂xb+ τyz1182

where tbx and tby are the horizontal components of the basal traction vector. We start1183

by integrating Equation (A3) from z to z = s(x, y):1184

σzz(s)− σzz(z) = (s− z) ρg cosα1185

The boundary conditions at the surface impose σzz(s) = 0 and so1186

σzz(z) = − (s− z) ρg cosα (A5)1187

Integrating again, we arrive at1188

∂x

∫ s

b

σzz(z)dz = σzz(b)∂xh−
1

2
h2∂xρg cosα (A6)1189

The next step is to integrate Equation (A1) from z = b(x, y) to z = s(x, y):1190 ∫ s

b

∂xσxxdz +

∫ s

b

∂yτxydz +

∫ s

b

∂zτxzdz = −ρgh sinα1191

and use Leibniz’ rule to interchange the order of integration and differentiation:1192

∂x

∫ s

b

σxxdz − σxx(s)∂xs+ σxx(b)∂xb1193

+∂y

∫ s

b

τxydz − τxy(s)∂xs+ τxy(b)∂xb1194

+τxz(s)− τxz(b) = −ρgh sinα1195

Substituting the boundary conditions at the upper and lower surface, we arrive at1196

∂x

∫ s

b

σxxdz + σzz(b)∂xb− tbx + ∂y

∫ s

b

τxydz = −ρgh sinα (A7)1197

The next step of the derivation is to express σxx in terms of σzz and other quantities which1198

are independent of z. Based on the definition of the deviatoric stresses, we can write1199

σxx = τxx − τzz + σzz (A8)1200

and eliminate τzz (which varies with depth) by using the mass-conservation equation as1201

follows. The generalised form of the mass-conservation equation is given by Equation1202

(2). In the typical derivation for the vertical-integration of the momentum equations in1203

the SSA, the density is assumed constant and the constraint simplifies to ∇·v. How-1204

ever, if we use the mass conservation equation for compressible material (Equation (2)),1205

and substitute the expression for the deviatoric stresses in terms of the velocity gradi-1206

ents, then we arrive at1207

−τzz = τxx + τyy +
2η

ρ

Dρ

Dt
(A9)1208

–36–
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The additional term, which scales as the material derivative of ρ, does not appear if we1209

assume a constant density ice sheet. It also disappears if we assume that the initial den-1210

sity distribution advects with the ice, such that Dρ/Dt = 0. Substituting Equation (A9)1211

into Equation (A8), we arrive at1212

σxx = σzz + 2τxx + τyy +
2η

ρ

Dρ

Dt
(A10)1213

where all terms on the right hand side of the equation apart from σzz are independent1214

of depth in the SSA. Substituting Equation (A10) into Equation (A7), we find1215

∂x

∫ s

b

σzzdz + ∂x

(
2hτxx + hτyy +

2ηh

ρ

Dρ

Dt

)
+ σzz(b)∂xb− tbx + ∂y(hτxy) = −ρgh sinα

(A11)1216

Inserting Equation (A6) into Equation (A11), we arrive at the first vertically-integrated1217

momentum equation:1218

∂x

(
2hτxx + hτyy +

2ηh

ρ

Dρ

Dt

)
+ ∂y(hτxy)− tbx = ρgh (∂xs cosα− sinα) +

1

2
h2g∂xρ cosα

(A12)1219

The procedure can be repeated for Equation (A2), where we use the relationship,1220

σyy = σzz + 2τyy + τxx +
2η

ρ

Dρ

Dt
1221

to derive the second vertically-integrated momentum equation:1222

∂y

(
2hτyy + hτxx +

2ηh

ρ

Dρ

Dt

)
+ ∂x(hτxy)− tby = ρgh∂ys cosα+

1

2
h2g∂yρ cosα1223

These results can be expressed in terms of the components of the velocity vector:1224

∂x

(
4hη∂xu+ 2hη∂yv +

2hη

ρ

Dρ

Dt

)
1225

+∂y(hη(∂xv + ∂yu))− tbx = ρgh (∂xs cosα− sinα) +
1

2
h2g∂xρ cosα1226

∂y

(
4hη∂yv + 2hη∂xu+

2hη

ρ

Dρ

Dt

)
1227

+∂x(hη(∂xv + ∂yu))− tby = ρgh∂ys cosα+
1

2
h2g∂yρ cosα1228

where u and v are the horizontal velocities in the x and y direction respectively.1229

A2 Mass-Conservation Equation1230

The generalised form of the mass-conservation equation which allows for density1231

variation in the ice sheet is1232

∇ · (ρv) + ∂tρ = 0 (A13)1233

To solve the vertical integration of this equation, we require the kinematic boundary con-1234

ditions:1235

∂ts+ u∂xs+ v∂xs− ws = as1236

∂tb+ u∂xb+ v∂xb− wb = −ab (A14)1237

where the horizontal velocities are independent of depth in the SSA; ws, wb are the ver-1238

tical velocity components at the upper and lower surfaces respectively; and as and ab1239

are the surface accumulation rate and basal melt rates respectively. Integrating Equa-1240

tion (A13) from z = b(x, y) to s(x, y):1241 ∫ s

b

(∂x(ρu) + ∂y(ρv) + ∂z(ρw)) dz + h∂tρ = 01242
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Changing the order of differentiation using Leibniz rule:1243

∇xy · qxy − ρu∂xh− ρv∂yh+ ρ(ws − wb) + h∂tρ = 01244

where ρ is assumed constant with depth, and we have introduced the horizontal mass1245

flux which is defined as1246

qxy ≡
∫ s

b

ρvxy dz1247

Substituting Equations (A14), we arrive at the vertically integrated mass-conservation1248

equation:1249

ρ∂th+∇xy · qxy + h∂tρ = ρa1250

where the total accumulation a = as + ab.1251

A3 Boundary Conditions at the Calving Front1252

The variation in the density distribution also has an impact on the boundary con-1253

ditions that exist at the calving front, a key constraint applied in shallow-ice models. At1254

the calving front Γc, we require balance of the vertically-integrated horizontal stresses.1255

In the x and y directions, this stress condition is1256 ∫ s

b

(σxxnx + τxyny) dz = −
∫ S

b

pwnxdz1257 ∫ s

b

(τxynx + σyyny) dz = −
∫ S

b

pwnydz (A15)1258

where pw is the hydrostatic ocean pressure, nx and ny are the components of the unit1259

normal pointing horizontally outward from the ice front, and S is the surface of the ocean.1260

The x-component of the vertically-integrated ocean pressure acting on the calving front,1261

can be solved to give1262

−
∫ S

b

pwnxdz = −1

2
ρwgd

2nx (A16)1263

where d ≡ S − b is the draft at the ice front. Meanwhile, combining Equations (A10)1264

and (A5), we have1265

σxx = − (s− z) ρg + 2τxx + τyy +
2η

ρ

Dρ

Dt
1266

where α = 0 in this coordinate system. Integrating from z = b to s:1267 ∫ s

b

σxxdz = h

(
2τxx + τyy +

2η

ρ

Dρ

Dt

)
− 1

2
ρgh2 (A17)1268

Substituting Equations (A16) and (A17) into Equation (A15), we arrive at the bound-1269

ary conditions at the calving front:1270

h

(
2τxx + τyy +

2η

ρ

Dρ

Dt

)
nx + hτxyny =

1

2
g
(
ρh2 − ρwd2

)
nx1271

h

(
2τyy + τxx +

2η

ρ

Dρ

Dt

)
ny + hτxynx =

1

2
g
(
ρh2 − ρwd2

)
ny1272

which can alternatively be expressed in terms of the velocity components as1273

2ηh

(
2∂xu+ ∂yv +

1

ρ

Dρ

Dt

)
nx + ηh (∂xv + ∂yu)ny =

1

2
g
(
ρh2 − ρwd2

)
nx1274

2ηh

(
2∂yv + ∂xu+

1

ρ

Dρ

Dt

)
ny + ηh (∂xv + ∂yu)nx =

1

2
g
(
ρh2 − ρwd2

)
ny1275
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A4 Effective Viscosity1276

Variations in the density field can also have an impact on the derivation of the ef-1277

fective viscosity in shallow-ice models. A simple linear model for viscosity, such that η1278

is a constant, will be unaffected. However in general, the rheology of the ice can be de-1279

scribed by a model such as Glen’s flow law in Equation (A4), for which the effective vis-1280

cosity is1281

η =
1

2
A−1/nε̇(1−n)/n

1282

where ε̇ =
√
ε̇ij ε̇ij/2 is the effective strain rate. In the SSA, the components ε̇xz and1283

ε̇yz are second order and can be neglected. Thus,1284

ε̇ =
√

(ε̇2xx + ε̇2yy + ε̇2zz)/2 + ε̇2xy1285

In the vertically-integrated approach, ε̇zz is unknown and specified via the mass-conservation:1286

ε̇ii =∇ · v = −1

ρ

Dρ

Dt
1287

which leads to1288

ε̇2zz =

(
ε̇xx + ε̇yy +

1

ρ

Dρ

Dt

)2

1289

Appendix B Vertically-Varying Density Profile1290

In the preceding derivation of the SSA equations, we assumed that the density of1291

the ice sheet was constant with depth and equal to the vertically-averaged density, be-1292

cause it is not possible to derive the SSA equations in a closed form for an arbitrary ver-1293

tical density profile. In this appendix, we explore this decision in a bit more detail.1294

In Thomas (1973) there is a discussion of the impact of vertical variations in den-1295

sity on the creep of ice shelves. They found that the effective shear stress at the ice-shelf1296

front was overestimated by a factor of two if the density was treated as constant, com-1297

pared to assuming a particular (exponential) form for the vertical density profile. How-1298

ever, this relationship is determined by the value of the double integral
∫ s
b

∫ s
z
ρ(z′)dz′dz1299

relative to the hydrostatic pressure at the ice front, and is not indicative of the effects1300

we could expect to see in the SSA equations, where it is the horizontal gradient of the1301

double integral that is the driving force.1302

The key step in the derivation of the SSA equations occurs at Equations (A5) and1303

(A6), where the density field is integrated twice with respect to z. If we allowed for a1304

depth-varying density field, then equation A6 instead becomes:1305

∂x

∫ s

b

σzz(z)dz = −∂x
(∫ s

b

∫ s

z

ρ(z′)dz′dz

)
g cosα (B1)1306

This integral cannot be further evaluated without specifying the form of the vertical den-1307

sity profile. The simplest assumption is that the density is constant with depth. This1308

is what we have done in the derivation of the SSA field equations and underpins the re-1309

sults presented in this paper. We could instead consider some parameterisations of the1310

vertical density profile which we explore further below.1311

One formulation is to model the density as two distinct layers: the bottom layer1312

is pure ice with density ρice; the top layer is firn with constant density ρfirn = 500kg/m3.1313

The thickness of the firn layer varies to match the measurements of the vertically aver-1314

aged density. With this model for the vertical density profile, we can solve the double1315

integral:1316 ∫ s

b

∫ s

z

ρ(z′)dz′dz =
1

2
ρ̄h(h− hf ) +

1

2
ρfirnhfh (B2)1317
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where hf is the thickness of the firn layer, and by definition1318

ρ̄× h = ρice(h− hf ) + ρfirnhf1319

With this model for the vertical density profile, Equation (A6) becomes1320

∂x

∫ s

b

σzz(z)dz = σzz(b)∂xh− ((h− hf )h∂xρ̄− (ρ̄− ρfirn)hf∂xh) g cosα (B3)1321

This propagates through the derivation, and modifies the driving force on the right-hand1322

side of the SSA momentum Equation (A12). It becomes1323

τ2−layer
driving = ρ̄gh (∂xs cosα− sinα) + ((h− hf )h∂xρ̄− (ρ̄− ρfirn)hf∂xh) g cosα (B4)1324

Previously, when assuming a constant vertical density profile, the driving force was1325

τ constant
driving = ρ̄gh (∂xs cosα− sinα) +

1

2
h2g∂xρ cosα (B5)1326

In the D2T adjustment, the firn layer is effectively modeled as hf = δ (the firn correc-1327

tion) and ρfirn = 0. Substituting these values into Equation (B4), this does indeed re-1328

cover the RHS of the momentum equation presented in Equation (26):1329

τD2T
driving = ρ̄gh (∂xs cosα− sinα) + ((h− δ)h∂xρ̄− ρ̄δ∂xh) g cosα (B6)1330

It should be noted that in the D2T formulation, terms on the left-hand side of the mo-1331

mentum equation multiplying the viscosity are also modified, as demonstrated in sec-1332

tion 5.5.1333

An alternative formulation is to model the density with the exponential vertical1334

profile described in Thomas (1973):1335

ρ(z) = ρice − (ρice − ρfirn)e−ν(s−z)
1336

where ρfirn is the density at the surface, and ν is the decay parameter. Typically ν ∼1337

5/h. If we fix the density at the surface, we have a one-to-one relationship between the1338

decay parameter and the vertically-averaged density:1339

ν−1 =

(
ρice − ρ̄
ρice − ρfirn

)
h1340

Following through the derivation, the driving force on the right-hand side of the SSA mo-1341

mentum Equation (A12) in this case becomes1342

τ exponential
driving = ρ̄gh (∂xs cosα− sinα) +

(
h− 2

ν

)
(h∂xρ̄− (ρice − ρ̄)∂xh) g cosα (B7)1343

where the exponential term is dropped once the double integral has been performed be-1344

cause e−νh � 1.1345

Substituting some typical values into the different expressions for the driving force1346

in Equations (B4, B5, B6 & B7), we find that the correction due to HDVs consists of1347

a term proportional to h2∂xρ with a coefficient that ranges from 0.5 (constant vertical1348

density) to 0.9 (D2T approximation) and another much smaller correction term that is1349

proportional to h∂xh. The assumption of constant vertical density is a good first approx-1350

imation, but this highlights that the HDV correction term in the SSA equations is sen-1351

sitive to the exact parameterisation of the vertical density profile that is assumed. This1352

is a limitation inherent in any vertically-integrated ice-sheet model. For a more compre-1353

hensive treatment it would be necessary to resort to a 3-D ice sheet model.1354
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Appendix C The Equilibrium Profile for a Floating Ice-Shelf1355

Starting from the momentum conservation in Equation (32), we derive the equi-1356

librium profile for a floating ice-shelf. This is a well-known solution in glaciology, with1357

one of the earliest derivations, to our knowledge, being that in Van der Veen (1983). Set-1358

ting the density of the ice shelf to be constant, we also assume linear viscosity such that1359

η = const, and constant surface mass-balance, a = as+ab. It is important that a 6= 0,1360

otherwise this is not a steady-state solution, and instead the ice shelf spreads out infinitely1361

thinly. The momentum-conservation simplifies to1362

∂xu =
%gh

8η
(C1)1363

and in a steady-state, with constant density, the vertically-integrated mass-conservation1364

in Equation (3) reduces to1365

∂x(uh) = a (C2)1366

Integrating this equation, and setting x = 0 at the grounding line (or some arbitrary1367

point on the ice shelf) without loss of generality, we have1368

u(x)h(x)− qgl = ax (C3)1369

where qgl = u|x=0h|x=0. Substituting the expressions for ∂xu and u(x), from Equations1370

(C1) and (C3) respectively, into Equation (C2), we find1371

%gh2

8η
+
ax+ qgl

h
∂xh = a1372

which can be rearranged to1373 (
h−3

ah−2 − %g/8η

)
dh

dx
=

1

(ax+ qgl)
1374

Integrating both sides we arrive at the steady-state solution:1375

h(x) =

[
1

a

(
K

(ax+ qgl)2
+
%g

8η

)]− 1
2

1376

and1377

u(x) =

[
1

a

(
K +

%g

8η
(ax+ qgl)

2

)] 1
2

1378

where K is an arbitrary integration constant, which can be determined by specifying the1379

thickness at x = 0:1380

K = q2
gl

(
a

h2
gl

− %g

8η

)
1381

where h|x=0 = hgl. We have plotted the equilibrium positions of the velocity, and up-1382

per and lower surfaces, of a floating ice shelf in Figure C1.1383

Appendix D Numerical vs Analytical Perturbations1384

In Figure D1, we compare the analytical results presented in Figures 4 and 5, to1385

numerical simulations performed in the large-scale ice-flow model Úa, for each of the dif-1386

ferent approaches to include HDVs: Density Variations [DV], Density Variations - Body1387

Force only [DV-BF] and Density-to-Thickness adjustment [D2T]. To arrive at these re-1388

sults required a modification to Úa to include additional terms in the momentum equa-1389

tion in order to replicate the DV formulation. The DVA formulation, which requires the1390

density distribution to evolve over time in the model, is not implemented in Úa, and so1391

not included here.1392
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Figure C1. Equilibrium positions of the upper and lower surfaces, s(x, t) and b(x, t) [solid

lines], and velocity, u(x, t) [dashed line], for the floating ice shelf. In this example, we set

ρ̄ = 900 kg/m3, η = 5 × 103 kPa · yr and the surface accumulation as = 1 m/yr.

The numerical and analytical results match very closely, which gives us confidence1393

that no mistakes were made in the analytical derivations, and that Úa is behaving cor-1394

rectly. The close match for the floating ice shelf is important, and confirms the valid-1395

ity of the approximation proposed in Ng et al. (2018), as well as the approach taken to1396

mask the k = 0 component of the transfer function to avoid the transfer function (in1397

this approximation) blowing up to infinity.1398

Notation1399

∂x partial derivative w.r.t. x1400

D
Dt

material derivative1401

α slope of the basal surface1402

β defined through β ≡ ρ̄gh̄
8η1403

γ defined through γ ≡ τ1−m
d /mc1404

δ firn air-content of the ice sheet1405

ε̇ij strain rates1406

ζ defined through ζ ≡ 2ηhk2ξ−1
1407

η vertically-integrated effective viscosity1408

λ wavelength1409

ξ defined through ξ ≡ γ + 4hk2η1410

ρ vertically-averaged ice-sheet density1411

ρice density of pure meteoric ice, 917 kg m−3
1412

ρw density of the ocean, 1030 kg m−3
1413

% defined through % ≡ ρ(1− ρ/ρw)1414

σij components of the Cauchy stress tensor1415

τij deviatoric stresses1416
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Figure D1. Example of the spatial distribution in h(x, t) and u(x, t) at t = 2yrs after an

initial 10% Gaussian density perturbation applied in ∆ρ. This compares the analytical response

to a full numerical simulation in Úa. The simulation parameters are the same as those specified

in Figures 4 and 5.
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τd driving stress1417

φ defined through φ ≡ 1− ∂xh̄
ikh̄

1418

φ? defined through φ? ≡ 1 + ∂xh̄
ikh̄

1419

ω angular frequency1420

a total accumulation, as + ab1421

ab basal melt1422

as surface accumulation1423

A rate factor in Glen’s flow law1424

b lower glacial surface1425

c, C basal slipperiness1426

d draft at the ice-front: S − b1427

h total glacial thickness1428

hice ice-equivalent thickness, h− δ1429

H(t) Heaviside step function1430

k wavenumber in the x-direction1431

m exponent in Weertman’s sliding law1432

ni components of unit normal vector1433

p pole in the Laplace frame for the grounded ice perturbations, it−1
p − t−1

r1434

pFL pole in the Laplace frame for the floating ice perturbations, iku− φ∂xu1435

qxy horizontal mass-flux1436

r laplace transform variable1437

s upper glacial surface1438

S ocean surface1439

t time1440

tb = (tbx, tby) basal drag1441

tp phase timescale1442

tr relaxation timescale1443

v, {vi}, (u, v, w) components of the velocity vector1444

vb basal velocity1445
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