947 research outputs found

    Significance of interface anisotropy in laser induced magnetization precession in ferromagnetic metal films

    Full text link
    Laser induced ultrafast demagnetization in ferromagnetic metals was discovered almost 20 years ago, but currently there is still lack of consensus on the microscopic mechanism responsible for the corresponding transfer of angular momentum and energy between electron, lattice and spin subsystems. A distinct, but intrinsically correlated phenomenon occurring on a longer timescale is the magnetization precession after the ultrafast demagnetization process, if a magnetic field is applied to tilt the magnetization vector away from its easy direction, which can be attributed to the change of anisotropy after laser heating. In an in-plane magnetized Pt/Co/Pt thin film with perpendicular interface anisotropy, we found excellent agreement between theoretical prediction with plausible parameters and experimental data measured using time resolved magneto-optical Kerr effect. This agreement confirms that the time evolution of the anisotropy field, which is driven by the interaction between electrons and phonons, determines the magnetization precession completely. A detailed analysis shows that, even though the whole sample is magnetized in-plane, the dynamic interface anisotropy field dictates the initial phase of the magnetization precession, highlighting the significance of the interface anisotropy field in laser induced magnetization precession.Comment: 11 pages, 2 figure

    Poincare Polynomials and Level Rank Dualities in the N=2N=2 Coset Construction

    Full text link
    We review the coset construction of conformal field theories; the emphasis is on the construction of the Hilbert spaces for these models, especially if fixed points occur. This is applied to the N=2N=2 superconformal cosets constructed by Kazama and Suzuki. To calculate heterotic string spectra we reformulate the Gepner con- struction in terms of simple currents and introduce the so-called extended Poincar\'e polynomial. We finally comment on the various equivalences arising between models of this class, which can be expressed as level rank dualities. (Invited talk given at the III. International Conference on Mathematical Physics, String Theory and Quantum Gravity, Alushta, Ukraine, June 1993. To appear in Theor. Math. Phys.)Comment: 14 pages in LaTeX, HD-THEP-93-4

    Observation of atom pairs in spontaneous four wave mixing of two colliding Bose-Einstein Condensates

    Full text link
    We study atom scattering from two colliding Bose-Einstein condensates using a position sensitive, time resolved, single atom detector. In analogy to quantum optics, the process can also be thought of as spontaneous, degenerate four wave mixing of de Broglie waves. We find a clear correlation between atoms with opposite momenta, demonstrating pair production in the scattering process. We also observe a Hanbury Brown and Twiss correlation for collinear momenta, which permits an independent measurement of the size of the pair production source and thus the size of the spatial mode. The back to back pairs occupy very nearly two oppositely directed spatial modes, a promising feature for future quantum optics experiments.Comment: A few typos have been correcte

    Hanbury Brown Twiss effect for ultracold quantum gases

    Full text link
    We have studied 2-body correlations of atoms in an expanding cloud above and below the Bose-Einstein condensation threshold. The observed correlation function for a thermal cloud shows a bunching behavior, while the correlation is flat for a coherent sample. These quantum correlations are the atomic analogue of the Hanbury Brown Twiss effect. We observe the effect in three dimensions and study its dependence on cloud size.Comment: Figure 1 availabl

    Automorphism Modular Invariants of Current Algebras

    Get PDF
    We consider those two-dimensional rational conformal field theories (RCFTs) whose chiral algebras, when maximally extended, are isomorphic to the current algebra formed from some affine non-twisted Kac--Moody algebra at fixed level. In this case the partition function is specified by an automorphism of the fusion ring and corresponding symmetry of the Kac--Peterson modular matrices. We classify all such partition functions when the underlying finite-dimensional Lie algebra is simple. This gives all possible spectra for this class of RCFTs. While accomplishing this, we also find the primary fields with second smallest quantum dimension.Comment: 32 pages, plain Te

    Setting Up an Industrial Control Systems Laboratory

    Full text link
    With the evolution of Industrial Control Systems, many solutions from vendors are offered for industries. But sadly, most of those solutions are close-sourced, delivering lack of support for third parties who aim to develop Industrial Control Systems further. A start-up company named SecurityMatters needs an industrial instrument to simulate industrial environment to have a better idea how a particular protocol works. The application made in this project was developed using Java programming language to have compatibilities across platforms. An Object-Oriented-Programming and Model-View-Controller pattern are used as well to ensure maintainability. This application can be used to demonstrate capabilities of Modbus protocol and test industrial devices for vulnerabilities

    The non-compact elliptic genus: mock or modular

    Get PDF
    We analyze various perspectives on the elliptic genus of non-compact supersymmetric coset conformal field theories with central charge larger than three. We calculate the holomorphic part of the elliptic genus via a free field description of the model, and show that it agrees with algebraic expectations. The holomorphic part of the elliptic genus is directly related to an Appell-Lerch sum and behaves anomalously under modular transformation properties. We analyze the origin of the anomaly by calculating the elliptic genus through a path integral in a coset conformal field theory. The path integral codes both the holomorphic part of the elliptic genus, and a non-holomorphic remainder that finds its origin in the continuous spectrum of the non-compact model. The remainder term can be shown to agree with a function that mathematicians introduced to parameterize the difference between mock theta functions and Jacobi forms. The holomorphic part of the elliptic genus thus has a path integral completion which renders it non-holomorphic and modular.Comment: 13 page

    Lattice Analogues of N=2N=2 Superconformal Models via Quantum Group Truncation

    Full text link
    We obtain lattice models whose continuum limits correspond to N=2N=2 superconformal coset models. This is done by taking the well known vertex model whose continuum limit is the GĂ—G/GG \times G/G conformal field theory, and twisting the transfer matrix and modifying the quantum group truncation. We find that the natural order parameters of the new models are precisely the chiral primary fields. The integrable perturbations of the conformal field theory limit also have natural counterparts in the lattice formulation, and these can be incorporated into an affine quantum group structure. The topological, twisted N=2N=2 superconformal models also have lattice analogues, and these emerge as an intermediate part of our analysis.Comment: 25 pages and 2 figure

    The Emperor's Last Clothes?

    Get PDF
    We are in the middle of a remarkable paradigm shift in particle physics, a shift of opinion that occurred so slowly that some even try to deny that they changed their minds at all. It concerns a very basic question: can we expect to derive the laws of particle physics from a fundamental theory? The Standard Model of particle physics as well as the 1984 string theory revolution provided ample food for thought about this. The reason this was ignored for so long can be traced back to an old fallacy: a misguided idea about our own importance.Comment: 88 pages, Review intended for readers with an education in physics. Preprint Nr. added, some statements corrected, some references added. A short version (about 20 pages) was published in Rept. Prog. Phys. 71:072201,2008. July 2010: Footnote added to correct a remark on nuclear bindin

    A Minimal Superstring Standard Model I: Flat Directions

    Get PDF
    Three family SU(3)_C x SU(2)_L x U(1)_Y string models in several constructions generically possess two features: (i) an extra local anomalous U(1)_A and (ii) numerous (often fractionally charged) exotic particles beyond those in the minimal supersymmetric model (MSSM). Recently, we demonstrated that the observable sector effective field theory of such a free fermionic string model can reduce to that of the MSSM, with the standard observable gauge group being just SU(3)_C x SU(2)_L x U(1)_Y and the SU(3)_C x SU(2)_L x U(1)_Y-charged spectrum of the observable sector consisting solely of the MSSM spectrum. An example of a model with this property was shown. We continue our investigation of this model by presenting a large set of different flat directions of the same model that all produce the MSSM spectrum. Our results suggest that even after imposing the conditions for the decoupling of exotic states, there may remain sufficient freedom to satisfy the remaining phenomenological constraints imposed by the observed data.Comment: 64 pages. Latex. Revisions to match version in Int. J. Mod. Physics
    • …
    corecore