research

Poincare Polynomials and Level Rank Dualities in the N=2N=2 Coset Construction

Abstract

We review the coset construction of conformal field theories; the emphasis is on the construction of the Hilbert spaces for these models, especially if fixed points occur. This is applied to the N=2N=2 superconformal cosets constructed by Kazama and Suzuki. To calculate heterotic string spectra we reformulate the Gepner con- struction in terms of simple currents and introduce the so-called extended Poincar\'e polynomial. We finally comment on the various equivalences arising between models of this class, which can be expressed as level rank dualities. (Invited talk given at the III. International Conference on Mathematical Physics, String Theory and Quantum Gravity, Alushta, Ukraine, June 1993. To appear in Theor. Math. Phys.)Comment: 14 pages in LaTeX, HD-THEP-93-4

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020