126 research outputs found

    Mechanisms of selenium removal by partially oxidized magnetite nanoparticles for wastewater remediation

    Get PDF
    Magnetite nanoparticles are a promising cost-effective material for the remediation of polluted wastewaters. Due to their magnetic properties and their high adsorption and reduction potential, they are particularly suitable for the decontamination of oxyanion-forming contaminants, including the highly mobile selenium oxyanions sele-nite and selenate. However, little is known how the remediation efficiency of magnetite nanoparticles in field applications is affected by partial oxidation and the formation of magnetite/maghemite phases. Here we char-acterize the retention mechanisms and capacity of partially oxidized nanoparticulate magnetite for selenite and selenate in an oxic system at different pH conditions and ionic strengths. Data from adsorption experiments showed that retention of selenate is extremely limited except for acidic conditions and strongly influenced by competing chloride anions, indicating outer-sphere adsorption. By contrast, although selenite adsorption ca-pacity of oxidized magnetite is also adversely affected by increasing pH, considerable selenite quantities are retained even at alkaline conditions. Using spectroscopic analyses (XPS, XAFS), both mononuclear edge-sharing (2E) and binuclear corner-sharing (2C) inner-sphere selenite surface complexes were detected, while reduction to Se(0) or Se(–II) species could be excluded. Under favourable adsorption conditions, up to ~pH 8, the affinity of selenite to form 2C surface complexes is higher, whereas at alkaline pH values and less favourable adsorption conditions 2E complexes become more dominant. Our results demonstrate that magnetite can be used as a suitable reactant for the immobilization of selenite in remediation applications, even under (sub)oxic conditions and without the involvement of reduction processes

    EXAFS investigation on U(VI) immobilization in hardened cement paste: influence of experimental conditions on speciation

    Get PDF
    Extended X-ray absorption fine structure (EXAFS) spectroscopy has been used to investigate the coordination environment of U(VI) in cementitious materials. The EXAFS measurements were carried out on U(VI)-doped samples prepared under varying conditions, such as samples from sorption, hydration and diffusion experiments, and using different cementitious materials, such as crushed hydrated hardened cement paste (HCP) and calcium silicate hydrates (C-S-H). The samples had U(VI) loadings ranging from 1700μg/g to 45000μg/g. Applying principal component analysis (PCA) on 13 EXAFS spectra (each spectra corresponding to aminimum of five different scans) of the low loading samples, one single species is obtained indicating asimilar U(VI) coordination environment for both HCP and C-S-H samples. This result confirms that C-S-H phases control the uptake of U(VI) in the complex cement matrix. The coordination environment structure of this species is similar to aU(VI) surface complex or to U(VI) in uranyl silicate minerals (two axial O atoms at 1.82±0.02 Å; four equatorial O atoms at 2.25±0.01 Å; one Si atom at 3.10±0.03 Å). At high U(VI) loading, PCA revealed asecond U(VI) species, with acoordination environment similar to that of U(VI) in calcium uranate (two axial O atoms at 1.94±0.04 Å; five equatorial O atoms at 2.26±0.01 Å; four Ca atoms at 3.69±0.05 Å and five U atoms at 3.85±0.04 Å). This study suggest that, at low U(VI) loading, U(VI) is bound to C-S-H phases in HCP while at high U(VI) loading, the immobilization of U(VI) in cementitious materials is mainly controlled by the precipitation of acalcium uranate-type phas

    Shedding Light on the Enigmatic TcO2 ⋅ xH2O Structure with Density Functional Theory and EXAFS Spectroscopy

    Get PDF
    The β-emitting 99Tc isotope is a high-yield fission product in 235U and 239Pu nuclear reactors, raising special concern in nuclear waste management due to its long half-life and the high mobility of pertechnetate (TcO4−). Under the conditions of deep nuclear waste repositories, Tc is retained through biotic and abiotic reduction of TcO4− to compounds like amorphous TcO2 ⋅ xH2O precipitates. It is generally accepted that these precipitates have linear (Tc(μ-O)2(H2O)2)n chains, with trans H2O. Although corresponding Tc−Tc and Tc−O distances have been obtained from extended X-ray absorption fine structure (EXAFS) spectroscopy, this structure is largely based on analogy with other compounds. Here, we combine density-functional theory with EXAFS measurements of fresh and aged samples to show that, instead, TcO2 ⋅ xH2O forms zigzag chains that undergo a slow aging process whereby they combine to form longer chains and, later, a tridimensional structure that might lead to a new TcO2 polymorph

    Pbx(OH)y cluster formation and anomalous thermal behaviour in STI framework-type zeolites

    Get PDF
    For the first time, the structural investigation of a Pb-exchanged zeolite (Pb13.4(OH)10Al17.4Si54.6O144 ∙38H2O) with STI framework type, revealed a highly unusual and intriguing sudden volume increase under continuous heating. Understanding the fundamental mechanisms leading to such an unusual behaviour is essential for technological applications and interpretation of chemical bonding in zeolites. The dehydration was tracked in situ from 25 to 450 °C by single crystal X-ray diffraction, infrared and X-ray absorption spectroscopy. Further interpretation of the experimental observations was supported by ab initio molecular dynamics simulations. Initially, Pb-STI unit-cell volume contracts (ΔV = -3.5%) from 25 to 100°C. This agrees with the trend observed in STI zeolites. Surprisingly, at 125°C, the framework expanded (ΔV = +2%), adopting a configuration, which resembles that of the room temperature structure. Upon heating, the structure loses H2O but no de-hydroxylation occurred. The key mechanism leading to the sudden volume increase was found to be the formation of Pbx(OH)y clusters, which prevent the shrinking of the channels, rupture of the tetrahedral bonds and occlusion of the pores. This zeolite has therefore an increased thermal stability with respect to other STI metal-exchanged zeolites, with important consequences on its applications

    Methyl Selenol as Precursor in Selenite Reduction to Se/S Species by Methane-oxidizing Bacteria.

    Get PDF
    A wide range of microorganisms have been shown to transform selenium-containing oxyanions to reduced forms of the element, particularly selenium-containing nanoparticles. Such reactions are promising for detoxification of environmental contamination and production of valuable selenium-containing products such as nanoparticles for application in biotechnology. It has previously been shown that aerobic methane-oxidising bacteria, including Methylococcus capsulatus (Bath), are able to perform methane-driven conversion of selenite (SeO32-) to selenium-containing nanoparticles and methylated selenium species. Here, the biotransformation of selenite by Mc. capsulatus (Bath) has been studied in detail via a range of imaging, chromatographic and spectroscopic techniques. The results indicate that the nanoparticles are produced extracellularly and have a composition distinct from nanoparticles previously observed from other organisms. The spectroscopic data from the methanotroph-derived nanoparticles are best accounted for by a bulk structure composed primarily of octameric rings in the form Se8-xSx with an outer coat of cell-derived biomacromolecules. Among a range of volatile methylated selenium and selenium-sulfur species detected, methyl selenol (CH3SeH) was found only when selenite was the starting material, although selenium nanoparticles (both biogenic and chemically produced) could be transformed into other methylated selenium species. This result is consistent with methyl selenol being an intermediate in methanotroph-mediated biotransformation of selenium to all the methylated and particulate products observed.ImportanceAerobic methane-oxidizing bacteria are ubiquitous in the environment. Two well characterised strains, Mc. capsulatus (Bath) and Methylosinus trichosporium OB3b, representing gamma- and alpha-proteobacterial methanotrophs, can convert selenite, an environmental pollutant, to volatile selenium compounds and selenium containing particulates. Both conversions can be harnessed for bioremediation of selenium pollution using biological or fossil methane as the feedstock and these organisms could be used to produce selenium-containing particles for food, and biotechnological applications. Using an extensive suite of techniques we identified precursors of selenium nanoparticle formation, and also that these nanoparticles are made up of eight membered mixed selenium and sulfur rings

    Oxidation State and Structure of Fe in Nontronite: From Oxidizing to Reducing Conditions.

    Get PDF
    The redox reaction between natural Fe-containing clay minerals and its sorbates is a fundamental process controlling the cycles of many elements such as carbon, nutrients, redox-sensitive metals, and metalloids (e.g., Co, Mn, As, Se), and inorganic as well as organic pollutants in Earth's critical zone. While the structure of natural clay minerals under oxic conditions is well-known, less is known about their behavior under anoxic and reducing conditions, thereby impeding a full understanding of the mechanisms of clay-driven reduction and oxidation (redox) reactions especially under reducing conditions. Here we investigate the structure of a ferruginous natural clay smectite, nontronite, under different redox conditions, and compare several methods for the determination of iron redox states. Iron in nontronite was gradually reduced chemically with the citrate-bicarbonate-dithionite (CBD) method. 57Fe Mössbauer spectrometry, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) spectroscopy including its pre-edge, extended X-ray absorption fine structure (EXAFS) spectroscopy, and mediated electrochemical oxidation and reduction (MEO/MER) provided consistent Fe(II)/Fe(III) ratios. By combining X-ray diffraction (XRD) and transmission electron microscopy (TEM), we show that the long-range structure of nontronite at the highest obtained reduction degree of 44% Fe(II) is not different from that of fully oxidized nontronite except for a slight basal plane dissolution on the external surfaces. The short-range order probed by EXAFS spectroscopy suggests, however, an increasing structural disorder and Fe clustering with increasing reduction of structural Fe
    corecore