Chloride green rust as scavenger of technetium: Immobilization and spectroscopic studies

Natalia Mayordomo¹, André Rossberg^{1,2}, Diana M. Rodríguez¹, Dieter Schild³, Andreas C. Scheinost^{1,2}, Vinzenz Brendler¹, and Katharina Müller¹.

¹Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, 01328 Dresden, Germany ²The Rossendorf Beamline, European Synchrotron Radiation Facility, 38034 Grenoble Cedex, France ³Karlsruhe Institute of Technology, Institute for Nuclear Waste Disposal, 76344 Eggenstein-Leopoldshafen, Germany

⁹⁹Tc as fission product in the environment of a repository for high level radioactive waste

- Long half-life ($\tau_{1/2} = 0.213$ Ma)
- Poorly retained by the natural and technical barriers in the repository

Improving knowledge about their solubility and retention can reduce conservatism and uncertainty in long-term safety assessment

HELMHOLTZ ZENTRUM **DRESDEN** ROSSENDORF

- High mobility

Chloride green rust (GR-CI)

- Corrosion product of iron \rightarrow near-field of repository ____
- Synthesized by coprecipitation of Fe^{II} and Fe^{III} at pH 9
- Specific surface area 55.8 m²/g
- Isoelectric point at pH 9.0

Tc sorption mechanisms on GR

- TC^{VII} anion exchange
- Fe²⁺ in the structure \rightarrow reductive immobilization
- Sorption of reduced $Tc^{V} \rightarrow$ surface complexation, precipitation, incorporation

Improve knowledge of Tc immobilization by GR under a wider range of chemical conditions than [8]

sity

Results

Contact experiments of Tc^{VII} with GR-CI

Raman

GR-CI + Tc pH 10

GR-CI + Tc pH 4

GR-CI

Raman shift (cm⁻¹)

Tc^{IV} re-oxidation experiments

$TC^{|V} + 4H_2O \rightarrow TC^{V||}O_4^- + 8H^+$ - Slower at pH_0 7.5 Fe phases

intensity (a.u) ----- GR pH 3.5 ----- GR pH 7.2 (a.u **Å**Fe^Ⅱ 2p_{3/2} GR+Tc pH 3.5 GR+Tc pH 7.2 Fe" 2p_{1/2} GR pH 11.0 GR+Tc pH 11.0 GR+Tc pH 3.5 GR+Tc pH 7.2 GR+Tc pH 11.0 OH $Tc^{IV} 3d_{3/2}$ 0.5 0.5-0.5 σ —— GR pH 3.5 - GR pH 7.2 GR pH 11.0 Norm GR+Tc pH 3.5 GR+Tc pH 7.2 GR+Tc pH 11.0 266 264 262 260 258 256 254 252 740 735 730 725 720 715 710 705 700 528 536 534 532 530 526 Binding energy (eV) Binding energy (eV) Binding energy (eV) $- OH \downarrow in presence$

of Tc

 $- Tc^{IV}$ present at all pH values

- Fe^{II} present on the surface

X-ray absorption spectroscopy

Scanning electron microscopy

X-ray photoelectron spectroscopy

- Two components by factor analysis. Component 2 dominate at \uparrow [Tc]

- Dependence on pH and [Tc]

2 x Tc-Fe @3.09 Å 2 x Tc-Fe @3.52 Å

1 x Tc-Tc @ 2.55 Å 1 x Tc-Fe @ 3.08 Å 2 x Tc-Fe @ 3.52 Å.

Component 2

- Cl contribution ↓ with pH & Tc
- GR-CI transformation: layered material \rightarrow particules

Conclusions

- GR-CI removes Tc by reductive immobilization
- Tc immobilization is quantitative despite of GR-CI transformation into other Fe-mineral phases with pH and Tc presence
- Tc interaction with the solid ocurrs through two different mechanisms, including tc^{IV} monomer and Tc^{IV} dimer surface complexation
- The presence of GR-CI in the near-field of the nuclear waste repository ensures the retardation of Tc

References and acknowledgments

[1] Rodriguez, D. M. et al. Env. Sci. Technol. 54, 2678–2687 (2020). [2] Rodríguez, D. M. et al. Chemosphere 281, 130904 (2021). [3] Mayordomo, N. et al. J. Hazard. Mater. 388, 122066 (2020). [4] Mayordomo, N. et al. Chem. Eng. J. 408, 127265 (2021). [5] Yalçıntaş, E. et al. Dalton Trans. 45, 17874–17885 (2016). [6] 1. Baumann, A. et al. App. Geochemistry 98, 321–330 (2018). [7] Duckworth S. B. et al. Radiochim. Acta 109(9), 681 (2021) [8] 1. Pepper, S. et al. J. Colloid Interface Sci. 2003, 268, 408–412. [9] TecRad webpage https://www.hzdr.de/db/Cms?pNid=1375.

Institute of Resource Ecology - Surface Processes Department Dr. Natalia Mayordomo · n.mayordomo-herranz@hzdr.de · www.hzdr.de

