17 research outputs found

    Amélioration de la dynamique

    Get PDF
    Les cours d’eau proches de l’état naturel sont des systĂšmes dynamiques: le lit et les rives sont rĂ©guliĂšrement modi!Ă©s par des crues, entraĂźnant la crĂ©ation de nouveaux habitats. Durant les derniĂšres dĂ©cennies, cette dynamique a souvent Ă©tĂ© restreinte suite Ă  l’endiguement de nombreuses riviĂšres. Son rĂ©tablissement est un objectif important des revitalisations. Cette fiche prĂ©sente les bases nĂ©cessaires Ă  l’amĂ©lioration de cette dynamique

    Förderung der Dynamik bei Revitalisierungen

    Get PDF
    Naturnahe FliessgewĂ€sser sind dynamische Systeme: GewĂ€ssersohle und Ufer werden regelmĂ€ssig durch Hochwasser umgestaltet, wodurch neue LebensrĂ€ume entstehen. In den letzten Jahrzehnten wurde diese Dynamik vielerorts eingeschrĂ€nkt, weil zahlreiche FliessgewĂ€sser verbaut wurden. Ein wichtiges Ziel von Revitalisierungen ist, sie wiederherzustellen. Das vorliegende Merkblatt prĂ€sentiert Grundlagen fĂŒr die Förderung der Dynamik

    Flussrevitalisierungen: eine Übersicht

    Get PDF
    Das Forschungsprojekt «Integrales Flussgebietsmanagement» erarbeitete ökologische und wasserbauliche Grundlagen zur Revitalisierung von FliessgewĂ€ssern und unterstĂŒtzt so deren Planung und Umsetzung. Die vorliegende Merkblatt-Sammlung prĂ€sentiert Ergebnisse dieses transdisziplinĂ€ren Projekts von Eawag, WSL, LCH-EPFL und VAW-ETHZ und richtet sich an Fachleute in BundesĂ€mtern, kantonalen Ämtern sowie Ingenieur- und ÖkobĂŒros

    BiodiversitÀt in FliessgewÀssern

    Get PDF
    VielfĂ€ltige, naturnahe und dynamische LebensrĂ€ume sind eine wichtige Voraussetzung dafĂŒr, die BiodiversitĂ€t in FliessgewĂ€ssern zu erhalten und zu fördern. Das vorliegende Merkblatt stellt die wichtigsten Faktoren fĂŒr die Lebensraum- und Artenvielfalt vor und prĂ€sentiert Empfehlungen, mit welchen Massnahmen die BiodiversitĂ€t erhöht werden kann

    BiodiversitĂ© dans les cours d’eau

    Get PDF
    Des habitats diversifiĂ©s, dynamiques et proches de l’état naturel sont indispensables Ă  la conservation et Ă  l’amĂ©lioration de la biodiversitĂ© dans les cours d’eau. Cette fiche prĂ©sente les principaux facteurs de la diversitĂ© des habitats et des espĂšces, ainsi que des mesures permettant d’accroĂźtre la biodiversit

    Programme national de lutte contre le VIH, les IST et l’hĂ©patite virale: unir les forces contre le VIH et les hĂ©patites virales

    No full text
    La StratĂ©gie suisse contre l’hĂ©patite a – tout comme l’Organisation mondiale de la SantĂ© (OMS) – pour objectif d’éliminer l’hĂ©patite B et C d’ici 2030. Cela signifie que les taux de nouvelles infections et des sĂ©quelles doivent ĂȘtre ramenĂ©s Ă  proche de zĂ©ro. Tous les instruments d’élimination, c’est-Ă -dire les mesures prĂ©ventives, les thĂ©rapies et les vaccinations, sont disponibles. Il s’agit maintenant de combler les lacunes en matiĂšre d’éducation, de dĂ©pistage et d’accĂšs Ă  la thĂ©rapie Ă  bas seuil

    InterFrost Project Phase 2: Updated experiment design for validation of Cryohydrogeological codes (Frozen Inclusion)

    No full text
    International audienceRecent field and modelling studies indicate that a fully-coupled, multi-dimensional, thermo-hydraulic (TH) approach is required to accurately model the evolution of permafrost-impacted landscapes and groundwater systems. However, the relatively new and complex numerical codes being developed for coupled non-linear freeze-thaw systems require validation. This issue was first addressed within the InterFrost IPA Action Group, by means of an intercomparison of thirteen numerical codes for two-dimensional TH test cases (TH2 & TH3). The main results (cf. Grenier et al. 2018 and wiki.lsce.ipsl.fr/interfrost) demonstrate that these codes provide robust results for the test cases considered. The second phase of the InterFrost project is devoted to the simulation of a cold-room reference experiment based on test case TH2 (Frozen Inclusion). In a first implementation phase of the experimental setup, the initial frozen inclusion was inserted in the setup prior to the complete filling of the porous medium and the flow initiation. The thermal evolution of the system was monitored by thermistors located at the center of the initial inclusion and along the downgradient centerline. This setup provided optimal conditions to control the initial experiment geometries but resulted in slight differences in the initialization time for different experiments. We present a second implementation strategy that considers "in place" generation of an initial frozen inclusion through a cooling coil. The initial frozen inclusion is obtained after the initial cooling time and its initial thermal state is measured by means of an array of thermistors. In a second step, the flow is initiated, and the thermal evolution is monitored through an array of 11 thermistors (within the initial position and downgradient). The experimental setup and monitoring results as well as preliminary simulation results are presented. Derived results and conclusions from this exercise form the basis for the next phase within the InterFrost validation exercise. Grenier, C. et al. 2018. Groundwater flow and heat transport for systems undergoing freeze-thaw: Inter-comparison of numerical simulators for 2D test cases. Adv. Wat. Res. 114: 196-218

    InterFrost Project Phase 2: Updated experiment design for validation of Cryohydrogeological codes (Frozen Inclusion)

    No full text
    22nd EGU General Assembly, held online 4-8 May, 2020International audienceRecent field and modelling studies indicate that a fully-coupled, multi-dimensional, thermo-hydraulic (TH) approach is required to accurately model the evolution of permafrost-impacted landscapes and groundwater systems. However, the relatively new and complex numerical codes being developed for coupled non-linear freeze-thaw systems require validation. This issue was first addressed within the InterFrost IPA Action Group, by means of an intercomparison of thirteen numerical codes for two-dimensional TH test cases (TH2 & TH3). The main results (cf. Grenier et al. 2018 and wiki.lsce.ipsl.fr/interfrost) demonstrate that these codes provide robust results for the test cases considered. The second phase of the InterFrost project is devoted to the simulation of a cold-room reference experiment based on test case TH2 (Frozen Inclusion). In a first implementation phase of the experimental setup, the initial frozen inclusion was inserted in the setup prior to the complete filling of the porous medium and the flow initiation. The thermal evolution of the system was monitored by thermistors located at the center of the initial inclusion and along the downgradient centerline. This setup provided optimal conditions to control the initial experiment geometries but resulted in slight differences in the initialization time for different experiments. We present a second implementation strategy that considers "in place" generation of an initial frozen inclusion through a cooling coil. The initial frozen inclusion is obtained after the initial cooling time and its initial thermal state is measured by means of an array of thermistors. In a second step, the flow is initiated, and the thermal evolution is monitored through an array of 11 thermistors (within the initial position and downgradient). The experimental setup and monitoring results as well as preliminary simulation results are presented. Derived results and conclusions from this exercise form the basis for the next phase within the InterFrost validation exercise. Grenier, C. et al. 2018. Groundwater flow and heat transport for systems undergoing freeze-thaw: Inter-comparison of numerical simulators for 2D test cases
    corecore