4,385 research outputs found
Interior regularity criteria for suitable weak solutions of the Navier-Stokes equations
We present new interior regularity criteria for suitable weak solutions of
the 3-D Navier-Stokes equations: a suitable weak solution is regular near an
interior point if either the scaled -norm of the velocity
with , , or the -norm of the
vorticity with , , or the
-norm of the gradient of the vorticity with , , , is sufficiently small near
A spatio-temporal Bayesian network approach for revealing functional ecological networks in fisheries
Omnivory by planktivores stabilizes plankton dynamics, but may either promote or reduce algal biomass
Classical models of phytoplankton–zooplankton interaction show that with nutrient enrichment such systems may abruptly shift from limit cycles to stable phytoplankton domination due to zooplankton predation by planktivorous fish. Such models assume that planktivorous fish eat only zooplankton, but there are various species of filter-feeding fish that may also feed on phytoplankton. Here, we extend these classical models to systematically explore the effects of omnivory by planktivorous fish. Our analysis indicates that if fish forage on phytoplankton in addition to zooplankton, the alternative attractors predicted by the classical models disappear for all realistic parameter settings, even if omnivorous fish have a strong preference for zooplankton. Our model also shows that the level of fish biomass above which zooplankton collapse should be higher when fish are omnivorous than when fish are zooplanktivorous. We also used the model to explore the potential effects of the now increasingly common practice of stocking lakes with filter-feeding fish to control cyanobacteria. Because omnivorous filter-feeding fish forage on phytoplankton as well as on the main grazers of phytoplankton, the net effect of such fish on the phytoplankton biomass is not obvious. Our model suggests that there may be a unimodal relationship between the biomass of omnivorous filter-feeding fish and the biomass of phytoplankton. This implies that to manage for reductions in phytoplankton biomass, heavy stocking or strong reduction of such fish is bes
Effects of submerged vegetation on water clarity across climates
A positive feedback between submerged vegetation and water clarity forms the backbone of the alternative state theory in shallow lakes. The water clearing effect of aquatic vegetation may be caused by different physical, chemical, and biological mechanisms and has been studied mainly in temperate lakes. Recent work suggests differences in biotic interactions between (sub)tropical and cooler lakes might result in a less pronounced clearing effect in the (sub)tropics. To assess whether the effect of submerged vegetation changes with climate, we sampled 83 lakes over a gradient ranging from the tundra to the tropics in South America. Judged from a comparison of water clarity inside and outside vegetation beds, the vegetation appeared to have a similar positive effect on the water clarity across all climatic regions studied. However, the local clearing effect of vegetation decreased steeply with the contribution of humic substances to the underwater light attenuation. Looking at turbidity on a whole-lake scale, results were more difficult to interpret. Although lakes with abundant vegetation (>30%) were generally clear, sparsely vegetated lakes differed widely in clarity. Overall, the effect of vegetation on water clarity in our lakes appears to be smaller than that found in various Northern hemisphere studies. This might be explained by differences in fish communities and their relation to vegetation. For instance, unlike in Northern hemisphere studies, we find no clear relation between vegetation coverage and fish abundance or their diet preference. High densities of omnivorous fish and coinciding low grazing pressures on phytoplankton in the (sub)tropics may, furthermore, weaken the effect of vegetation on water clarity
Use of real-time quantitative reverse transcription polymerase chain reaction for the detection of African horse sickness virus replication in Culicoides imicola
Despite its important role as vector for African horse sickness virus (AHSV),
very little information is available on the dissemination of this virus in
Culicoides (Avaritia) imicola Kieffer (Diptera: Ceratopogonidae). This study
reports on the applicability of a real-time quantitative reverse transcription
polymerase chain reaction (RT-qPCR) to detect AHSV in dissected midges. A
total of 96 midges were fed on AHSV-infected blood, after which one test group
was dissected into head/thorax and abdomen segments immediately after feeding
and the other only after 10 days of incubation. The majority of the midges
(96%) ingested the virus successfully and there was no significant difference
between the virus concentration in the heads/thoraxes and the abdomens
immediately after feeding. After incubation, virus was detected in 51% of the
midges and it was confined to the abdomen in the majority of these. The fact
that virus was detected only in the heads/thoraxes of four Culicoides midges
after incubation suggests the presence of a mesenteronal escape barrier.
Replication in the salivary glands was not shown. An increase of the mean
virus concentration in the abdomen after incubation indicates localised viral
replication. The real-time RT-qPCR is recommended for further studies
investigating the replication and dissemination of AHSV in Culicoides midges
Tubular structures of GaS
In this Brief Report we demonstrate, using density-functional tight-binding theory, that gallium sulfide (GaS) tubular nanostructures are stable and energetically viable. The GaS-based nanotubes have a semiconducting direct gap which grows towards the value of two-dimensional hexagonal GaS sheet and is in contrast to carbon nanotubes largely independent of chirality. We further report on the mechanical properties of the GaS-based nanotubes
The Clumping Transition in Niche Competition: a Robust Critical Phenomenon
We show analytically and numerically that the appearance of lumps and gaps in
the distribution of n competing species along a niche axis is a robust
phenomenon whenever the finiteness of the niche space is taken into account. In
this case depending if the niche width of the species is above or
below a threshold , which for large n coincides with 2/n, there are
two different regimes. For the lumpy pattern emerges
directly from the dominant eigenvector of the competition matrix because its
corresponding eigenvalue becomes negative. For the lumpy
pattern disappears. Furthermore, this clumping transition exhibits critical
slowing down as is approached from above. We also find that the number
of lumps of species vs. displays a stair-step structure. The positions
of these steps are distributed according to a power-law. It is thus
straightforward to predict the number of groups that can be packed along a
niche axis and it coincides with field measurements for a wide range of the
model parameters.Comment: 16 pages, 7 figures;
http://iopscience.iop.org/1742-5468/2010/05/P0500
A Cognitive Model of an Epistemic Community: Mapping the Dynamics of Shallow Lake Ecosystems
We used fuzzy cognitive mapping (FCM) to develop a generic shallow lake
ecosystem model by augmenting the individual cognitive maps drawn by 8
scientists working in the area of shallow lake ecology. We calculated graph
theoretical indices of the individual cognitive maps and the collective
cognitive map produced by augmentation. The graph theoretical indices revealed
internal cycles showing non-linear dynamics in the shallow lake ecosystem. The
ecological processes were organized democratically without a top-down
hierarchical structure. The steady state condition of the generic model was a
characteristic turbid shallow lake ecosystem since there were no dynamic
environmental changes that could cause shifts between a turbid and a clearwater
state, and the generic model indicated that only a dynamic disturbance regime
could maintain the clearwater state. The model developed herein captured the
empirical behavior of shallow lakes, and contained the basic model of the
Alternative Stable States Theory. In addition, our model expanded the basic
model by quantifying the relative effects of connections and by extending it.
In our expanded model we ran 4 simulations: harvesting submerged plants,
nutrient reduction, fish removal without nutrient reduction, and
biomanipulation. Only biomanipulation, which included fish removal and nutrient
reduction, had the potential to shift the turbid state into clearwater state.
The structure and relationships in the generic model as well as the outcomes of
the management simulations were supported by actual field studies in shallow
lake ecosystems. Thus, fuzzy cognitive mapping methodology enabled us to
understand the complex structure of shallow lake ecosystems as a whole and
obtain a valid generic model based on tacit knowledge of experts in the field.Comment: 24 pages, 5 Figure
Acquired resistance of human T cells to sulfasalazine: stability of the resistant phenotype and sensitivity to non-related DMARDs.
2.5 weeks) resumption of SSZ resistance and ABCG2 expression as in the original CEM/SSZ cells. CEM/SSZ cells displayed diminished sensitivity to the DMARDs leflunomide (5.1-fold) and methotrexate (1.8-fold), were moderately more sensitive (1.6-2.0 fold) to cyclosporin A and chloroquine, and markedly more sensitive (13-fold) to the glucocorticoid dexamethasone as compared with parental CEM cells. CONCLUSION: The drug efflux pump ABCG2 has a major role in conferring resistance to SSZ. The collateral sensitivity of SSZ resistant cells for some other (non-related) DMARDs may provide a further rationale for sequential mono- or combination therapies with distinct DMARDs upon decreased efficacy of SSZ
How Gaussian competition leads to lumpy or uniform species distributions
A central model in theoretical ecology considers the competition of a range
of species for a broad spectrum of resources. Recent studies have shown that
essentially two different outcomes are possible. Either the species surviving
competition are more or less uniformly distributed over the resource spectrum,
or their distribution is 'lumped' (or 'clumped'), consisting of clusters of
species with similar resource use that are separated by gaps in resource space.
Which of these outcomes will occur crucially depends on the competition kernel,
which reflects the shape of the resource utilization pattern of the competing
species. Most models considered in the literature assume a Gaussian competition
kernel. This is unfortunate, since predictions based on such a Gaussian
assumption are not robust. In fact, Gaussian kernels are a border case
scenario, and slight deviations from this function can lead to either uniform
or lumped species distributions. Here we illustrate the non-robustness of the
Gaussian assumption by simulating different implementations of the standard
competition model with constant carrying capacity. In this scenario, lumped
species distributions can come about by secondary ecological or evolutionary
mechanisms or by details of the numerical implementation of the model. We
analyze the origin of this sensitivity and discuss it in the context of recent
applications of the model.Comment: 11 pages, 3 figures, revised versio
- …
