34 research outputs found
Single-Particle Spin-Orbit Strengths of the Nucleon and Hyperons by SU6 Quark-Model
The quark-model hyperon-nucleon interaction suggests an important
antisymmetric spin-orbit component. It is generated from a color analogue of
the Fermi-Breit interaction dominating in the one-gluon exchange process
between quarks. We discuss the strength S_B of the single-particle spin-orbit
potential, following the Scheerbaum's prescription. Using the SU6 quark-model
baryon-baryon interaction which was recently developed by the Kyoto-Niigata
group, we calculate NN, Lambda N and Sigma N G-matrices in symmetric nuclear
matter and apply them to estimate the strength S_B. The ratio of S_B to the
nucleon strength S_N =~ -40 MeV*fm^5 is (S_Lambda)/(S_N) =~ 1/5 and
(S_Sigma)/(S_N) =~ 1/2 in the Born approximation. The G-matrix calculation of
the model FSS modifies S_Lambda to (S_Lambda)/(S_N) =~ 1/12. For S_N and
S_Sigma, the effect of the short-range correlation is comparatively weak
against meson-exchange potentials with a short-range repulsive core. The
significant reduction of the Lambda single-particle potential arises from the
combined effect of the antisymmetric LS force, the flavor-symmetry breaking
originating from the strange to up-down quark-mass difference, as well as the
effect of the short-range correlation. The density dependence of S_B is also
examined.Comment: 26 page
Totally Microscopic Description of N-O-16 Elastic-Scattering
Journals published by the American Physical Society can be found at http://publish.aps.org
Microscopic calculation of proton capture reactions in mass 60-80 region and its astrophysical implications
Microscopic optical potentials obtained by folding the DDM3Y interaction with
the densities from Relativistic Mean Field approach have been utilized to
evaluate S-factors of low-energy reactions in mass 60-80 region
and to compare with experiments. The Lagrangian density FSU Gold has been
employed. Astrophysical rates for important proton capture reactions have been
calculated to study the behaviour of rapid proton nucleosynthesis for waiting
point nuclei with mass less than A=80
Homogenization in magnetic-shape-memory polymer composites
Magnetic-shape-memory materials (e.g. specific NiMnGa alloys) react with a
large change of shape to the presence of an external magnetic field. As an
alternative for the difficult to manifacture single crystal of these alloys we
study composite materials in which small magnetic-shape-memory particles are
embedded in a polymer matrix. The macroscopic properties of the composite
depend strongly on the geometry of the microstructure and on the
characteristics of the particles and the polymer.
We present a variational model based on micromagnetism and elasticity, and
derive via homogenization an effective macroscopic model under the assumption
that the microstructure is periodic. We then study numerically the resulting
cell problem, and discuss the effect of the microstructure on the macroscopic
material behavior. Our results may be used to optimize the shape of the
particles and the microstructure.Comment: 17 pages, 4 figure
A Realistic Description of Nucleon-Nucleon and Hyperon-Nucleon Interactions in the SU_6 Quark Model
We upgrade a SU_6 quark-model description for the nucleon-nucleon and
hyperon-nucleon interactions by improving the effective meson-exchange
potentials acting between quarks. For the scalar- and vector-meson exchanges,
the momentum-dependent higher-order term is incorporated to reduce the
attractive effect of the central interaction at higher energies. The
single-particle potentials of the nucleon and Lambda, predicted by the G-matrix
calculation, now have proper repulsive behavior in the momentum region q_1=5 -
20 fm^-1. A moderate contribution of the spin-orbit interaction from the
scalar-meson exchange is also included. As to the vector mesons, a dominant
contribution is the quadratic spin-orbit force generated from the rho-meson
exchange. The nucleon-nucleon phase shifts at the non-relativistic energies up
to T_lab=350 MeV are greatly improved especially for the 3E states. The
low-energy observables of the nucleon-nucleon and the hyperon-nucleon
interactions are also reexamined. The isospin symmetry breaking and the Coulomb
effect are properly incorporated in the particle basis. The essential feature
of the Lambda N - Sigma N coupling is qualitatively similar to that obtained
from the previous models. The nuclear saturation properties and the
single-particle potentials of the nucleon, Lambda and Sigma are reexamined
through the G-matrix calculation. The single-particle potential of the Sigma
hyperon is weakly repulsive in symmetric nuclear matter. The single-particle
spin-orbit strength for the Lambda particle is very small, in comparison with
that of the nucleons, due to the strong antisymmetric spin-orbit force
generated from the Fermi-Breit interaction.Comment: Revtex v2.09, 69 pages with 25 figure
Shell Structure of Exotic Nuclei
Theoretical predictions and experimental discoveries for neutron-rich,
short-lived nuclei far from stability indicate that the familiar concept of
nucleonic shell structure should be considered as less robust than previously
thought. The notion of single-particle motion in exotic nuclei is reviewed with
a particular focus on three aspects: (i) variations of nuclear mean field with
neutron excess due to tensor interactions; (ii) importance of many-body
correlations; and (iii) influence of open channels on properties of weakly
bound and unbound nuclear states.Comment: 14 pages, 7 figures, submitted to Progress in Particle and Nuclear
Physics, Proc. of the International School of Nuclear Physics 28th Course,
Radioactive Beams, Nuclear Dynamics and Astrophysics, Erice-Sicily: 16 - 24
September 200
Soft-core hyperon-nucleon potentials
A new Nijmegen soft-core OBE potential model is presented for the low-energy
YN interactions. Besides the results for the fit to the scattering data, which
largely defines the model, we also present some applications to hypernuclear
systems using the G-matrix method. An important innovation with respect to the
original soft-core potential is the assignment of the cut-off masses for the
baryon-baryon-meson (BBM) vertices in accordance with broken SU(3), which
serves to connect the NN and the YN channels. As a novel feature, we allow for
medium strong breaking of the coupling constants, using the model with
a Gell-Mann--Okubo hypercharge breaking for the BBM coupling. We present six
hyperon-nucleon potentials which describe the available YN cross section data
equally well, but which exhibit some differences on a more detailed level. The
differences are constructed such that the models encompass a range of
scattering lengths in the and channels. For the
scalar-meson mixing angle we obtained values to 40 degrees, which
points to almost ideal mixing angles for the scalar states. The
G-matrix results indicate that the remarkably different spin-spin terms of the
six potentials appear specifically in the energy spectra of
hypernuclei.Comment: 37 pages, 4 figure