250 research outputs found
Neurotrophin-3 regulates ribbon synapse density in the cochlea and induces synapse regeneration after acoustic trauma
Neurotrophin-3 (Ntf3) and brain derived neurotrophic factor (Bdnf) are critical for sensory neuron survival and establishment of neuronal projections to sensory epithelia in the embryonic inner ear, but their postnatal functions remain poorly understood. Using cell-specific inducible gene recombination in mice we found that, in the postnatal inner ear, Bbnf and Ntf3 are required for the formation and maintenance of hair cell ribbon synapses in the vestibular and cochlear epithelia, respectively. We also show that supporting cells in these epithelia are the key endogenous source of the neurotrophins. Using a new hair cell CreERT line with mosaic expression, we also found that Ntf3's effect on cochlear synaptogenesis is highly localized. Moreover, supporting cell-derived Ntf3, but not Bbnf, promoted recovery of cochlear function and ribbon synapse regeneration after acoustic trauma. These results indicate that glial-derived neurotrophins play critical roles in inner ear synapse density and synaptic regeneration after injury. DOI: http://dx.doi.org/10.7554/eLife.03564.00
Recommended from our members
Strengthening E-cadherin adhesion via antibody-mediated binding stabilization
E-cadherins (Ecads) are a crucial cell-cell adhesion protein with tumor suppression properties. Ecad adhesion can be enhanced by the monoclonal antibody 66E8, which has potential applications in inhibiting cancer metastasis. However, the biophysical mechanisms underlying 66E8-mediated adhesion strengthening are unknown. Here, we use molecular dynamics simulations, site-directed mutagenesis, and single-molecule atomic force microscopy experiments to demonstrate that 66E8 strengthens Ecad binding by stabilizing the primary Ecad adhesive conformation: the strand-swap dimer. By forming electrostatic interactions with Ecad, 66E8 stabilizes the swapped β-strand and its hydrophobic pocket and impedes Ecad conformational changes, which are necessary for rupture of the strand-swap dimer. Our findings identify fundamental mechanistic principles for strengthening of Ecad binding using monoclonal antibodies
Phenylbutyric Acid Rescues Endoplasmic Reticulum Stress-Induced Suppression of APP Proteolysis and Prevents Apoptosis in Neuronal Cells
BACKGROUND: The familial and sporadic forms of Alzheimer's disease (AD) have an identical pathology with a severe disparity in the time of onset [1]. The pathological similarity suggests that epigenetic processes may phenocopy the Familial Alzheimer's disease (FAD) mutations within sporadic AD. Numerous groups have demonstrated that FAD mutations in presenilin result in 'loss of function' of gamma-secretase mediated APP cleavage [2], [3], [4], [5]. Accordingly, ER stress is prominent within the pathologically impacted brain regions in AD patients [6] and is reported to inhibit APP trafficking through the secretory pathway [7], [8]. As the maturation of APP and the cleaving secretases requires trafficking through the secretory pathway [9], [10], [11], we hypothesized that ER stress may block trafficking requisite for normal levels of APP cleavage and that the small molecular chaperone 4-phenylbutyrate (PBA) may rescue the proteolytic deficit. METHODOLOGY/PRINCIPAL FINDINGS: The APP-Gal4VP16/Gal4-reporter screen was stably incorporated into neuroblastoma cells in order to assay gamma-secretase mediated APP proteolysis under normal and pharmacologically induced ER stress conditions. Three unrelated pharmacological agents (tunicamycin, thapsigargin and brefeldin A) all repressed APP proteolysis in parallel with activation of unfolded protein response (UPR) signaling-a biochemical marker of ER stress. Co-treatment of the gamma-secretase reporter cells with PBA blocked the repressive effects of tunicamycin and thapsigargin upon APP proteolysis, UPR activation, and apoptosis. In unstressed cells, PBA stimulated gamma-secretase mediated cleavage of APP by 8-10 fold, in the absence of any significant effects upon amyloid production, by promoting APP trafficking through the secretory pathway and the stimulation of the non-pathogenic alpha/gamma-cleavage. CONCLUSIONS/SIGNIFICANCE: ER stress represses gamma-secretase mediated APP proteolysis, which replicates some of the proteolytic deficits associated with the FAD mutations. The small molecular chaperone PBA can reverse ER stress induced effects upon APP proteolysis, trafficking and cellular viability. Pharmaceutical agents, such as PBA, that stimulate alpha/gamma-cleavage of APP by modifying intracellular trafficking should be explored as AD therapeutics
A new role under sortilin's belt in cancer.
The neurotensin receptor-3 also known as sortilin was the first member of the small family of vacuolar protein sorting 10 protein domain (Vps10p) discovered two decades ago in the human brain. The expression of sortilin is not confined to the nervous system but sortilin is ubiquitously expressed in many tissues. Sortilin has multiple roles in the cell as a receptor or a co-receptor, in protein transport of many interacting partners to the plasma membrane, to the endocytic pathway and to the lysosomes for protein degradation. Sortilin could be considered as the cells own shuttle system. In many human diseases including neurological diseases and cancer, sortilin expression has been shown to be deregulated. In addition, some studies have highlighted that the extracellular domain of sortilin is shedded into the culture media by an unknown mechanism. Sortilin can be released in exosomes and appears to control some mechanisms of exosome biogenesis. In lung cancer cells, sortilin can associate with two receptor tyrosine kinase receptors called the TES complex found in exosomes. Exosomes carrying the TES complex can convey a microenvironment control through the activation of ErbB signaling pathways and the release of angiogenic factors. Deregulation of sortilin function is now emerging to be implicated in four major human diseases- cardiovascular disease, Type 2 diabetes mellitus, Alzheimer’s disease and cancer
Disorganized Innervation and Neuronal Loss in the Inner Ear of Slitrk6-Deficient Mice
Slitrks are type I transmembrane proteins that share conserved leucine-rich repeat domains similar to those in the secreted axonal guidance molecule Slit. They also show similarities to Ntrk neurotrophin receptors in their carboxy-termini, sharing a conserved tyrosine residue. Among 6 Slitrk family genes in mammals, Slitrk6 has a unique expression pattern, with strong expression in the sensory epithelia of the inner ear. We generated Slitrk6-knockout mice and investigated the development of their auditory and vestibular sensory organs. Slitrk6-deficient mice showed pronounced reduction in the cochlear innervation. In the vestibule, the innervation to the posterior crista was often lost, reduced, or sometimes misguided. These defects were accompanied by the loss of neurons in the spiral and vestibular ganglia. Cochlear sensory epithelia from Slitrk6-knockout mice have reduced ability in promoting neurite outgrowth of spiral ganglion neurons. Indeed the Slitrk6-deficient inner ear showed a mild but significant decrease in the expression of Bdnf and Ntf3, both of which are essential for the innervation and survival of sensory neurons. In addition, the expression of Ntrk receptors, including their phosphorylated forms was decreased in Slitrk6-knockout cochlea. These results suggest that Slitrk6 promotes innervation and survival of inner ear sensory neurons by regulating the expression of trophic and/or tropic factors including neurotrophins from sensory epithelia
Role of neurotrophin signalling in the differentiation of neurons from dorsal root ganglia and sympathetic ganglia
P150 ENHANCING EPITHELIAL BARRIER FUNCTION WITH NOVEL E-CADHERIN ACTIVATING MONOCLONAL ANTIBODIES REDUCES INFLAMMATORY BOWEL DISEASE PROGRESSION IN MOUSE MODELS
P150 ENHANCING EPITHELIAL BARRIER FUNCTION WITH NOVEL E-CADHERIN ACTIVATING MONOCLONAL ANTIBODIES REDUCES INFLAMMATORY BOWEL DISEASE PROGRESSION IN MOUSE MODELS
Abstract
Deficits in gastrointestinal (GI) epithelial barrier function play important roles in the pathogenesis of Inflammatory Bowel Disease (IBD). The CDH1 gene encoding E-cadherin, a key component of the epithelial junctional complex, is associated with Ulcerative Colitis (UC), and perhaps Crohn’s disease (CD). E-cadherin is the principle adhesive component of the adherens junction, and it regulates paracellular permeability by facilitating the formation of tight junctions and organizing the entire epithelial junction complex. We have identified monoclonal antibodies (mAbs) that bind to E-cadherin and activate adhesion in a variety of epithelial cells. In this study, we aim to test the hypothesis that strengthening E-cadherin adhesion with activating mAbs will enhance barrier function and decrease progression of IBD while maintaining mucosal health and homeostasis. Mouse mAbs to E-cadherin have been tested in vivo using the IL10-knock out mouse and adoptive T cell transfer model of colitis with similar histological evaluation. Transfer of CD4+CD45Rb high T cells from donor to immunocompromised mice produced typical histologic lesions for the adoptive transfer model including inflammation of the mucosa/submucosa, crypt damage, erosions, edema, and epithelial hyperplasia. E-Cadherin activating mAb (r56.4) treatment reduced total colitis score, mucosal hyperplasia, inflammation, gland loss scores, and neutrophilic infiltration in CD45Rb high T cell recipient mice compared to control E-cad mAb (r19.1–10) treatment. In IL10 KO BL6 mouse model of colitis, average lesion severity scores were lower in the r56.4 treatment group in comparison to the r19.1–10 treatment group for all the histological hallmarks of colitis. Further studies are in progress to investigate the therapeutic potential of E-Cadherin mAbs in the rescue of inflammation in pre-clinical mouse models of colitis.</jats:p
E-cadherin activating antibodies limit barrier dysfunction and inflammation in mouse inflammatory bowel disease
- …
