163 research outputs found

    Modulation of the glyoxalase system in the aging model Podospora anserina : effects on growth and lifespan

    Get PDF
    The eukaryotic glyoxalase system consists of two enzymatic components, glyoxalase I (lactoylglutathionelyase) and glyoxalase II (hydroxyacylglutathione hydrolase). These enzymes are dedicated to the removal of toxic alpha-oxoaldehydes like methylglyoxal (MG). MG is formed as a by-product of glycolysis and MG toxicity results from its damaging capability leading to modifications of proteins, lipids and nucleic acids. An efficient removal of MG appears to be essential to ensure cellular functionality and viability. Here we study the effects of the genetic modulation of genes encoding the components of the glyoxalase system in the filamentous ascomycete and aging model Podospora anserina. Overexpression of PaGlo1 leads to a lifespan reduction on glucose rich medium, probably due to depletion of reduced glutathione. Deletion of PaGlo1 leads to hypersensitivity against MG added to the growth medium. A beneficial effect on lifespan is observed when both PaGlo1 and PaGlo2 are overexpressed and the corresponding strains are grown on media containing increased glucose concentrations. Notably, the double mutant has a ‘healthy’ phenotype without physiological impairments. Moreover, PaGlo1/PaGlo2_OEx strains are not long-lived on media containing standard glucose concentrations suggesting a tight correlation between the efficiency and capacity to remove MG within the cell, the level of available glucose and lifespan. Overall, our results identify the up-regulation of both components of the glyoxalase system as an effective intervention to increase lifespan in P. anserina. Key words: Podospora anserina, aging, lifespan, glycation, glucose, methylglyoxal, advanced glycation end product

    Mitochondrial-nuclear interactions, oxidative stress and ageing processes of the filamentous ascomycete Podospora anserina

    Get PDF
    Mitochondrien, Organellen der oxidativen Phosphorylierung, sind in vielfältiger Weise an Alterungsprozessen in unterschiedlichen Modellorganismen beteiligt. Viele Mechanismen und Faktoren, die das Altern beeinflussen, scheinen konserviert zu sein. In dem in dieser Arbeit untersuchten Ascomyzeten Podospora anserina treten z. B. altersabhängige Reorganisationen der mtDNA auf, die zu einem Verlust lebensnotwendiger Gene führen können. In Menschen wurden ebenfalls Umstrukturierungen des mitochondrialen Genoms in unterschiedlichen Geweben mit fortschreitendem Alter beschrieben. Umgekehrt treten manche Faktoren, die die Lebensspanne beeinflussen, nur in einigen Modellsystemen auf. Hierzu gehört z. B. die Induktion der alternativen Oxidase in vielen langlebigen P. anserina-Mutanten. Diese Modifikation in der Atmungskette kann in S. cerevisiae und Säugern nicht beobachtet werden, da diesen Organismen eine alternative terminale Oxidase der oxidativen Phosphorylierung fehlt. Der Fragestellung, wie die Atmungskette im Falle der exklusiven PaAOX-abhängigen Respiration in der unsterblichen Mutante ex1 hinsichtlich der Zusammensetzung und kinetischer Eigenschaften des Elektronentransports charakterisiert ist, wurde in der vorliegenden Arbeit nachgegangen. Über die funktionalen Eigenschaften der Mitochondrien hinaus ist auch die Morphologie dieser Organellen altersabhängiger Änderungen unterworfen. Hinsichtlich der Gestalt der Mitochondrien in verschiedenen Altersstadien ist nur sehr wenig bekannt. Bisher steht nur fest, dass der P. anserina-Wildstamm „S“ im mittelalten Stadium filamentöse Mitochondrien aufweist. Ob und in welchem Ausmaß es zu Veränderungen der mitochondrialen Morphologie während des Alterns im Wildstamm „s“ und der Mutante grisea kommt, wurde im Rahmen der vorliegenden Arbeit analysiert. In der vorliegenden Arbeit wurde darüber hinaus PaDnm1 als putativer mitochondrialer Teilungsfaktor charakterisiert. Insbesondere die Modulation der PaDnm1-Expression durch Überexpression bzw. Deletion soll zeigen, welchen Einfluss PaDnm1 auf die mitochondriale Morphologie und andere phänotypische Parameter wie z. B. die Lebensspanne hat. Die in dieser Arbeit durchgeführten Untersuchungen führten zu folgenden Ergebnissen: 1. Im Wildstamm „s“ wurde im Gegensatz zu ex1 durch enzymkinetische Analysen eine starke Interaktion der Komplexe I und III nachgewiesen. Ein Großteil der Komplexe I und III ist im Wildstamm „s“ in Form von Superkomplexen organisiert. In der Mutante ex1 liegen die Komplexe I und III dagegen hauptsächlich frei vor. Die spezifische Aktivität der Cytochrom-c-Reduktase ist in ex1 niedriger als im Wildstamm „s“. 2. Seneszente Isolate des Wildstammes „s“ und der PaDnm1::ble-Mutante weisen im Gegensatz zur Mutante grisea eine starke Freisetzung von Wasserstoffperoxid auf. 3. Juvenile und mittelalte Wildstamm „s“-Isolate enthalten überwiegend kurze, filamentöse Mitochondrien, die entlang der Hyphenachse im Cytoplasma orientiert sind. Im seneszenten Stadium kommt es zu einer starken mitochondrialen Fragmentierung. Der Übergang von einer filamentösen zu einer sphärischen Morphologie dieser Organellen tritt auch in Mutante grisea auf. In ex1-Hyphen sind hauptsächlich filamentöse Mitochondrien enthalten. Initiale Analysen zur mitochondrialen Feinstruktur zeigen, dass in Wildstamm „s“ und Mutante grisea eine lamellenartige Cristaestruktur erkennbar ist. In der Mutante ex1 hingegen erscheinen die Cristae ungeordneter und weniger zahlreich. 4. Die Mitochondrienfragmentierung im seneszenten Wildstamm „s“ korreliert mit einer Induktion der Transkription von PaDnm1. In Mutante grisea ist die PaDnm1-Transkriptmenge während des Alterns konstant, obwohl sich die mitochondriale Morphologie wie im Wildstamm „s“ verändert. Überexpression von PaDnm1 führt zur Mitochondrienfragmentierung während die gezielte Deletion dieses Gens eine starke Elongation der Mitochondrien zur Folge hat. PaDnm1 ist somit das erste in einem filamentösen Pilz charakterisierte Gen der mitochondrialen Teilungsmaschinerie. 5. PaDnm1::ble-Isolate zeigen im seneszenten Stadium mitochondriale Fragmentierung wie Wildstamm „s“ und Mutante grisea. Das mitochondriale Genom von PaDnm1::ble ist stabilisiert, d. h. die Bildung der seneszenzfördernden plDNA wird unterdrückt. Die mittlere Lebensspanne der PaDnm1::ble-Mutante ist deutlich (> Faktor 10) gegenüber der des Wild-stammes „s“ erhöht. Bemerkenswerterweise zeigt PaDnm1::ble im Gegensatz zu anderen langlebigen P. anserina-Mutanten nach der Sporenkeimung keine physiologischen Defekte: Wuchsrate, männliche und weibliche Fertilität, Myzelmorphologie und Mitochondrien-segregation während der Ascosporengenese sind nicht eingeschränkt. Allerdings weist PaDnm1::ble eine erhöhte Empfindlichkeit gegenüber Ammoniumazetat auf. Dies äußert sich in einer Inhibierung der Sporenkeimung und einer Verringerung der Wuchsrate bei Anzucht der Mutante auf AmAc-haltigem Medium.Mitochondria, the organelles of oxidative phosphorylation, are involved in the control of organismic ageing. A lot of mechanisms which influence ageing processes are conserved among different species. For example, reorganisations of mitochondrial DNA (mtDNA) which can lead to the loss of essential genes of the respiratory chain are a hallmark of the ageing in the filamentous ascomycete Podospora anserina. Alterations of mtDNA in different tissues have also been described in elderly humans. On the other hand, some mechanisms are private to certain species. One example is the induction of an alternative oxidase (PaAOX) in the respiratory chain in many long-lived P. anserina mutants. This alteration of the respiratory chain cannot be studied in organisms like yeast, S. cerevisiae, or humans, for example, because they lack AOX. The molecular characterisation of the PaAOX-exclusive respiratory chain in the immortal P. anserina ex1 mutant is one topic of this thesis. Another issue which is investigated in this work is the question, how mitochondrial morphology changes during ageing in P. anserina. A gene involved in mitochondrial fission control, PaDnm1, is characterised. The key findings of this thesis are summarised below. 1. Respiratory chain complexes I and III of the wild-type show a pronounced interaction in contrast to their counterparts in mutant ex1. Most of the corresponding wild-type complexes I and III are organised in so-called “supercomplexes”. In contrast, these complexes reside mainly independently in the inner mitochondrial membranes of ex1. The specific activity of complex III is lower in ex1 compared to the wild-type. 2. Senescent isolates of the wild-type and mutant PaDnm1::ble are characterised by a pronounced release of hydrogen peroxide in the senescent phase. This is not the case in senescent isolates of mutant grisea. 3. Juvenile and middle-aged wild-type isolates contain mostly short, filamentous mitochondria. In the senescent phase, marked mitochondrial fragmentation takes place. This also happens in mutant grisea. The structure of mitochondrial cristae is altered in mutant ex1 mitochondria in comparison to the wild-type and mutant grisea (e.g. less cristae are visible). 4. In the wild-type, mitochondrial fragmentation correlates with an induction of the mitochondrial fission gene PaDnm1. By contrast, PaDnm1 transcription is constitutive in mutant grisea, although mitochondrial fragmentation also occurs in the senescent phase. Overexpression of PaDnm1 in the wild-type leads to an increase of mitochondrial fragmentation. Deletion of PaDnm1 leads to a pronounced elongation of mitochondria. Sometimes, the formation of elaborate mitochondrial networks can be observed in the PaDnm1 deletion strain PaDnm1::ble. 5. The PaDnm1::ble mutant is characterised by a stabilisation of mtDNA. Life-span is increased > 10fold in comparision to the wild-type. Remarkably, PaDnm1::ble isolates display no phenotypic defects after germination, i.e. growth rate, pigmentation, male as well as female fertility are wild-type like. However, PaDnm1::ble spores are sensitive to ammonium acetate

    31-03-2020 Antibiotics – Classes and targets

    Get PDF
    This presentation gives an overview on antibiotics, compounds that are used to treat infectious diseases. In the first part, a brief introduction on the history and relevance of antibiotics is given. The second part explains how antibiotics are able to kill bacteria or at least inhibit their growth. Among these targets are cell wall biosynthesis, DNA replication and protein production. Part three details some challenges that our health systems face to combat the emergence of resistant ‘superbugs’. Some mechanisms are detailed by which bacteria can become resistant to the action of antibiotics and turn into these superbugs. The fourth and final part of the presentation outlines some strategies how to identify or develop novel antibiotics in order to be prepared for ‘superbugs’. As an appendix, a brief test is provided in which you can test your knowledge on antibiotics

    Age-related cellular copper dynamics in the fungal ageing model Podospora anserina and in ageing human fibroblasts

    Get PDF
    In previous investigations an impact of cellular copper homeostasis on ageing of the ascomycete Podospora anserina has been demonstrated. Here we provide new data indicating that mitochondria play a major role in this process. Determination of copper in the cytosolic fraction using total reflection X-ray fluorescence spectroscopy analysis and eGfp reporter gene studies indicate an age-related increase of cytosolic copper levels. We show that components of the mitochondrial matrix (i.e. eGFP targeted to mitochondria) become released from the organelle during ageing. Decreasing the accessibility of mitochondrial copper in P. anserina via targeting a copper metallothionein to the mitochondrial matrix was found to result in a switch from a copper-dependent cytochrome-c oxidase to a copper-independent alternative oxidase type of respiration and results in lifespan extension. In addition, we demonstrate that increased copper concentrations in the culture medium lead to the appearance of senescence biomarkers in human diploid fibroblasts (HDFs). Significantly, expression of copper-regulated genes is induced during in vitro ageing in medium devoid of excess copper suggesting that cytosolic copper levels also increase during senescence of HDFs. These data suggest that the identified molecular pathway of age-dependent copper dynamics may not be restricted to P. anserina but may be conserved from lower eukaryotes to humans

    The Impact of Peroxisomes on Cellular Aging and Death

    Get PDF
    Peroxisomes are ubiquitous eukaryotic organelles, which perform a plethora of functions including hydrogen peroxide metabolism and β-oxidation of fatty acids. Reactive oxygen species produced by peroxisomes are a major contributing factor to cellular oxidative stress, which is supposed to significantly accelerate aging and cell death according to the free radical theory of aging. However, relative to mitochondria, the role of the other oxidative organelles, the peroxisomes, in these degenerative pathways has not been extensively investigated. In this contribution we discuss our current knowledge on the role of peroxisomes in aging and cell death, with focus on studies performed in yeast

    Alternative Oxidase Dependent Respiration Leads to an Increased Mitochondrial Content in Two Long-Lived Mutants of the Ageing Model Podospora anserina

    Get PDF
    The retrograde response constitutes an important signalling pathway from mitochondria to the nucleus which induces several genes to allow compensation of mitochondrial impairments. In the filamentous ascomycete Podospora anserina, an example for such a response is the induction of a nuclear-encoded and iron-dependent alternative oxidase (AOX) occurring when cytochrome-c oxidase (COX) dependent respiration is affected. Several long-lived mutants are known which predominantly or exclusively respire via AOX. Here we show that two AOX-utilising mutants, grisea and PaCox17::ble, are able to compensate partially for lowered OXPHOS efficiency resulting from AOX-dependent respiration by increasing mitochondrial content. At the physiological level this is demonstrated by an elevated oxygen consumption and increased heat production. However, in the two mutants, ATP levels do not reach WT levels. Interestingly, mutant PaCox17::ble is characterized by a highly increased release of the reactive oxygen species (ROS) hydrogen peroxide. Both grisea and PaCox17::ble contain elevated levels of mitochondrial proteins involved in quality control, i. e. LON protease and the molecular chaperone HSP60. Taken together, our work demonstrates that AOX-dependent respiration in two mutants of the ageing model P. anserina is linked to a novel mechanism involved in the retrograde response pathway, mitochondrial biogenesis, which might also play an important role for cellular maintenance in other organisms

    Heterozygous Mutation of Opa1 in Drosophila Shortens Lifespan Mediated through Increased Reactive Oxygen Species Production

    Get PDF
    Optic atrophy 1 (OPA1) is a dynamin-like GTPase located in the inner mitochondrial membrane and mutations in OPA1 are associated with autosomal dominant optic atrophy (DOA). OPA1 plays important roles in mitochondrial fusion, cristae remodeling and apoptosis. Our previous study showed that dOpa1 mutation caused elevated reactive oxygen species (ROS) production and resulted in damage and death of the cone and pigment cells in Drosophila eyes. Since ROS-induced oxidative damage to the cells is one of the primary causes of aging, in this study, we examined the effects of heterozygous dOpa1 mutation on the lifespan. We found that heterozygous dOpa1 mutation caused shortened lifespan, increased susceptibility to oxidative stress and elevated production of ROS in the whole Drosophila. Antioxidant treatment partially restored lifespan in the male dOpa1 mutants, but had no effects in the females. Heterozygous dOpa1 mutation caused an impairment of respiratory chain complex activities, especially complexes II and III, and reversible decreased aconitase activity. Heterozygous dOpa1 mutation is also associated with irregular and dysmorphic mitochondria in the muscle. Our results, for the first time, demonstrate the important role of OPA1 in aging and lifespan, which is most likely mediated through augmented ROS production

    Promoting Drp1-mediated mitochondrial fission in midlife prolongs healthy lifespan of Drosophila melanogaster

    Get PDF
    The accumulation of dysfunctional mitochondria has been implicated in aging, but a deeper understanding of mitochondrial dynamics and mitophagy during aging is missing. Here, we show that upregulating Drp1—a Dynamin-related protein that promotes mitochondrial fission—in midlife, prolongs Drosophila lifespan and healthspan. We find that short-term induction of Drp1, in midlife, is sufficient to improve organismal health and prolong lifespan, and observe a midlife shift toward a more elongated mitochondrial morphology, which is linked to the accumulation of dysfunctional mitochondria in aged flight muscle. Promoting Drp1-mediated mitochondrial fission, in midlife, facilitates mitophagy and improves both mitochondrial respiratory function and proteostasis in aged flies. Finally, we show that autophagy is required for the anti-aging effects of midlife Drp1-mediated mitochondrial fission. Our findings indicate that interventions that promote mitochondrial fission could delay the onset of pathology and mortality in mammals when applied in midlife

    Effects of calorie restriction on life span of microorganisms

    Get PDF
    Calorie restriction (CR) in microorganisms such as budding and fission yeasts has a robust and well-documented impact on longevity. In order to efficiently utilize the limited energy during CR, these organisms shift from primarily fermentative metabolism to mitochondrial respiration. Respiration activates certain conserved longevity factors such as sirtuins and is associated with widespread physiological changes that contribute to increased survival. However, the importance of respiration during CR-mediated longevity has remained controversial. The emergence of several novel metabolically distinct microbial models for longevity has enabled CR to be studied from new perspectives. The majority of CR and life span studies have been conducted in the primarily fermentative Crabtree-positive yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, but studies in primarily respiratory Crabtree-negative yeast and obligate aerobes can offer complementary insight into the more complex mammalian response to CR. Not only are microorganisms helping characterize a conserved cellular mechanism for CR-mediated longevity, but they can also directly impact mammalian metabolism as part of the natural gut flora. Here, we discuss the contributions of microorganisms to our knowledge of CR and longevity at the level of both the cell and the organism

    Deceleration of Fusion–Fission Cycles Improves Mitochondrial Quality Control during Aging

    Get PDF
    Mitochondrial dynamics and mitophagy play a key role in ensuring mitochondrial quality control. Impairment thereof was proposed to be causative to neurodegenerative diseases, diabetes, and cancer. Accumulation of mitochondrial dysfunction was further linked to aging. Here we applied a probabilistic modeling approach integrating our current knowledge on mitochondrial biology allowing us to simulate mitochondrial function and quality control during aging in silico. We demonstrate that cycles of fusion and fission and mitophagy indeed are essential for ensuring a high average quality of mitochondria, even under conditions in which random molecular damage is present. Prompted by earlier observations that mitochondrial fission itself can cause a partial drop in mitochondrial membrane potential, we tested the consequences of mitochondrial dynamics being harmful on its own. Next to directly impairing mitochondrial function, pre-existing molecular damage may be propagated and enhanced across the mitochondrial population by content mixing. In this situation, such an infection-like phenomenon impairs mitochondrial quality control progressively. However, when imposing an age-dependent deceleration of cycles of fusion and fission, we observe a delay in the loss of average quality of mitochondria. This provides a rational why fusion and fission rates are reduced during aging and why loss of a mitochondrial fission factor can extend life span in fungi. We propose the ‘mitochondrial infectious damage adaptation’ (MIDA) model according to which a deceleration of fusion–fission cycles reflects a systemic adaptation increasing life span
    corecore