343 research outputs found

    Deep Policy Dynamic Programming for Vehicle Routing Problems

    Get PDF
    Routing problems are a class of combinatorial problems with many practical applications. Recently, end-to-end deep learning methods have been proposed to learn approximate solution heuristics for such problems. In contrast, classical dynamic programming (DP) algorithms guarantee optimal solutions, but scale badly with the problem size. We propose Deep Policy Dynamic Programming (DPDP), which aims to combine the strengths of learned neural heuristics with those of DP algorithms. DPDP prioritizes and restricts the DP state space using a policy derived from a deep neural network, which is trained to predict edges from example solutions. We evaluate our framework on the travelling salesman problem (TSP), the vehicle routing problem (VRP) and TSP with time windows (TSPTW) and show that the neural policy improves the performance of (restricted) DP algorithms, making them competitive to strong alternatives such as LKH, while also outperforming most other 'neural approaches' for solving TSPs, VRPs and TSPTWs with 100 nodes.Comment: 21 page

    Small molecule inhibitors of Late SV40 Factor (LSF) abrogate hepatocellular carcinoma (HCC): evaluation using an endogenous HCC model

    Get PDF
    Hepatocellular carcinoma (HCC) is a lethal malignancy with high mortality and poor prognosis. Oncogenic transcription factor Late SV40 Factor (LSF) plays an important role in promoting HCC. A small molecule inhibitor of LSF, Factor Quinolinone Inhibitor 1 (FQI1), significantly inhibited human HCC xenografts in nude mice without harming normal cells. Here we evaluated the efficacy of FQI1 and another inhibitor, FQI2, in inhibiting endogenous hepatocarcinogenesis. HCC was induced in a transgenic mouse with hepatocyte-specific overexpression of c-myc (Alb/c-myc) by injecting N-nitrosodiethylamine (DEN) followed by FQI1 or FQI2 treatment after tumor development. LSF inhibitors markedly decreased tumor burden in Alb/c-myc mice with a corresponding decrease in proliferation and angiogenesis. Interestingly, in vitro treatment of human HCC cells with LSF inhibitors resulted in mitotic arrest with an accompanying increase in CyclinB1. Inhibition of CyclinB1 induction by Cycloheximide or CDK1 activity by Roscovitine significantly prevented FQI-induced mitotic arrest. A significant induction of apoptosis was also observed upon treatment with FQI. These effects of LSF inhibition, mitotic arrest and induction of apoptosis by FQI1s provide multiple avenues by which these inhibitors eliminate HCC cells. LSF inhibitors might be highly potent and effective therapeutics for HCC either alone or in combination with currently existing therapies.The present study was supported in part by grants from The James S. McDonnell Foundation, National Cancer Institute Grant R01 CA138540-01A1 (DS), National Institutes of Health Grant R01 CA134721 (PBF), the Samuel Waxman Cancer Research Foundation (SWCRF) (DS and PBF), National Institutes of Health Grants R01 GM078240 and P50 GM67041 (SES), the Johnson and Johnson Clinical Innovation Award (UH), and the Boston University Ignition Award (UH). JLSW was supported by Alnylam Pharmaceuticals, Inc. DS is the Harrison Endowed Scholar in Cancer Research and Blick scholar. PBF holds the Thelma Newmeyer Corman Chair in Cancer Research. The authors acknowledge Dr. Lauren E. Brown (Dept. Chemistry, Boston University) for the synthesis of FQI1 and FQI2, and Lucy Flynn (Dept. Biology, Boston University) for initially identifying G2/M effects caused by FQI1. (James S. McDonnell Foundation; R01 CA138540-01A1 - National Cancer Institute; R01 CA134721 - National Institutes of Health; R01 GM078240 - National Institutes of Health; P50 GM67041 - National Institutes of Health; Samuel Waxman Cancer Research Foundation (SWCRF); Johnson and Johnson Clinical Innovation Award; Boston University Ignition Award; Alnylam Pharmaceuticals, Inc.)Published versio

    Constraint Programming for Multi-criteria Conceptual Clustering

    Get PDF
    International audienceA conceptual clustering is a set of formal concepts (i.e., closed itemsets) that defines a partition of a set of transactions. Finding a conceptual clustering is an N P-complete problem for which Constraint Programming (CP) and Integer Linear Programming (ILP) approaches have been recently proposed. We introduce new CP models to solve this problem: a pure CP model that uses set constraints, and an hybrid model that uses a data mining tool to extract formal concepts in a preprocessing step and then uses CP to select a subset of formal concepts that defines a partition. We compare our new models with recent CP and ILP approaches on classical machine learning instances. We also introduce a new set of instances coming from a real application case, which aims at extracting setting concepts from an Enterprise Resource Planning (ERP) software. We consider two classic criteria to optimize, i.e., the frequency and the size. We show that these criteria lead to extreme solutions with either very few small formal concepts or many large formal concepts, and that compromise clusterings may be obtained by computing the Pareto front of non dominated clusterings

    Linked randomised controlled trials of face-to-face and electronic brief intervention methods to prevent alcohol related harm in young people aged 14–17 years presenting to Emergency Departments (SIPS junior)

    Get PDF
    Background: Alcohol is a major global threat to public health. Although the main burden of chronic alcohol-related disease is in adults, its foundations often lie in adolescence. Alcohol consumption and related harm increase steeply from the age of 12 until 20 years. Several trials focusing upon young people have reported significant positive effects of brief interventions on a range of alcohol consumption outcomes. A recent review of reviews also suggests that electronic brief interventions (eBIs) using internet and smartphone technologies may markedly reduce alcohol consumption compared with minimal or no intervention controls. Interventions that target non-drinking youth are known to delay the onset of drinking behaviours. Web based alcohol interventions for adolescents also demonstrate significantly greater reductions in consumption and harm among ‘high-risk’ drinkers; however changes in risk status at follow-up for non-drinkers or low-risk drinkers have not been assessed in controlled trials of brief alcohol interventions

    Intrinsic dynamic behavior of fascin in filopodia

    Get PDF
    Author Posting. © American Society for Cell Biology, 2007. This article is posted here by permission of American Society for Cell Biology for personal use, not for redistribution. The definitive version was published in Molecular Biology of the Cell 18 (2007): 3928-3940, doi:10.1091/mbc.E07-04-0346.Recent studies showed that the actin cross-linking protein, fascin, undergoes rapid cycling between filopodial filaments. Here, we used an experimental and computational approach to dissect features of fascin exchange and incorporation in filopodia. Using expression of phosphomimetic fascin mutants, we determined that fascin in the phosphorylated state is primarily freely diffusing, whereas actin bundling in filopodia is accomplished by fascin dephosphorylated at serine 39. Fluorescence recovery after photobleaching analysis revealed that fascin rapidly dissociates from filopodial filaments with a kinetic off-rate of 0.12 s–1 and that it undergoes diffusion at moderate rates with a coefficient of 6 µm2s–1. This kinetic off-rate was recapitulated in vitro, indicating that dynamic behavior is intrinsic to the fascin cross-linker. A computational reaction–diffusion model showed that reversible cross-linking is required for the delivery of fascin to growing filopodial tips at sufficient rates. Analysis of fascin bundling indicated that filopodia are semiordered bundles with one bound fascin per 25–60 actin monomers.This work was supported by a National Institutes of Health F31National Research Service Award NS055565-01 (to Y.S.A.), Northwestern University Pulmonary and Critical Care Division T32 (to T.E.S.), and National Institutes of Health grant GM-70898 (to G.G.B.)

    A Multiwell Platform for Studying Stiffness-Dependent Cell Biology

    Get PDF
    Adherent cells are typically cultured on rigid substrates that are orders of magnitude stiffer than their tissue of origin. Here, we describe a method to rapidly fabricate 96 and 384 well platforms for routine screening of cells in tissue-relevant stiffness contexts. Briefly, polyacrylamide (PA) hydrogels are cast in glass-bottom plates, functionalized with collagen, and sterilized for cell culture. The Young's modulus of each substrate can be specified from 0.3 to 55 kPa, with collagen surface density held constant over the stiffness range. Using automated fluorescence microscopy, we captured the morphological variations of 7 cell types cultured across a physiological range of stiffness within a 384 well plate. We performed assays of cell number, proliferation, and apoptosis in 96 wells and resolved distinct profiles of cell growth as a function of stiffness among primary and immortalized cell lines. We found that the stiffness-dependent growth of normal human lung fibroblasts is largely invariant with collagen density, and that differences in their accumulation are amplified by increasing serum concentration. Further, we performed a screen of 18 bioactive small molecules and identified compounds with enhanced or reduced effects on soft versus rigid substrates, including blebbistatin, which abolished the suppression of lung fibroblast growth at 1 kPa. The ability to deploy PA gels in multiwell plates for high throughput analysis of cells in tissue-relevant environments opens new opportunities for the discovery of cellular responses that operate in specific stiffness regimes

    Myosin IIA Modulates T Cell Receptor Transport and CasL Phosphorylation during Early Immunological Synapse Formation

    Get PDF
    Activation of T cell receptor (TCR) by antigens occurs in concert with an elaborate multi-scale spatial reorganization of proteins at the immunological synapse, the junction between a T cell and an antigen-presenting cell (APC). The directed movement of molecules, which intrinsically requires physical forces, is known to modulate biochemical signaling. It remains unclear, however, if mechanical forces exert any direct influence on the signaling cascades. We use T cells from AND transgenic mice expressing TCRs specific to the moth cytochrome c 88–103 peptide, and replace the APC with a synthetic supported lipid membrane. Through a series of high spatiotemporal molecular tracking studies in live T cells, we demonstrate that the molecular motor, non-muscle myosin IIA, transiently drives TCR transport during the first one to two minutes of immunological synapse formation. Myosin inhibition reduces calcium influx and colocalization of active ZAP-70 (zeta-chain associated protein kinase 70) with TCR, revealing an influence on signaling activity. More tellingly, its inhibition also significantly reduces phosphorylation of the mechanosensing protein CasL (Crk-associated substrate the lymphocyte type), raising the possibility of a direct mechanical mechanism of signal modulation involving CasL

    Cell motility: the integrating role of the plasma membrane

    Get PDF
    The plasma membrane is of central importance in the motility process. It defines the boundary separating the intracellular and extracellular environments, and mediates the interactions between a motile cell and its environment. Furthermore, the membrane serves as a dynamic platform for localization of various components which actively participate in all aspects of the motility process, including force generation, adhesion, signaling, and regulation. Membrane transport between internal membranes and the plasma membrane, and in particular polarized membrane transport, facilitates continuous reorganization of the plasma membrane and is thought to be involved in maintaining polarity and recycling of essential components in some motile cell types. Beyond its biochemical composition, the mechanical characteristics of the plasma membrane and, in particular, membrane tension are of central importance in cell motility; membrane tension affects the rates of all the processes which involve membrane deformation including edge extension, endocytosis, and exocytosis. Most importantly, the mechanical characteristics of the membrane and its biochemical composition are tightly intertwined; membrane tension and local curvature are largely determined by the biochemical composition of the membrane and the biochemical reactions taking place; at the same time, curvature and tension affect the localization of components and reaction rates. This review focuses on this dynamic interplay and the feedbacks between the biochemical and biophysical characteristics of the membrane and their effects on cell movement. New insight on these will be crucial for understanding the motility process
    corecore